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OSCILLATION OF SOLUTIONS OF A LINEAR
SECOND ORDER DISCRETE DELAYED EQUATION

BAŠTINEC Jaromı́r, (CZ), DIBLÍk Josef, (CZ)

Abstract. A linear second order discrete delayed equation Δx(n) = −p(n)x(n− 1) with
a positive coefficient p is considered for n →∞. This equation is known to have a positive
solution if p fulfils an inequality. The goal of the paper is to show that in the case of an
opposite inequality for p all solutions of the equation considered are oscillating for n →∞.
Key words and phrases. Discrete equation, delay, linear equation, positive solution,
oscillating solution.
Mathematics Subject Classification. Primary 39A10; Secondary 39A11.

1 Introduction

In this remark we consider the delayed scalar linear discrete equation of the second order

Δx(n) = −p(n)x(n− 1) (1)

where n ∈ Z∞
a := {a, a+1, . . . }, a ∈ N i s fixed, Δx(n) = x(n+1)−x(n), p : Z∞

a → R+ := (0,∞).
A solution x = x(n) : Z∞

a → R of (1) is positive on Z∞
a if x(n) > 0 for every n ∈ Z∞

a .
A solution x = x(n) : Z∞

a → R of (1) is oscillating on Z∞
a if it is not positive on Z∞

a1
for

arbitrary a1 ∈ Z∞
a .

In the paper [1] a delayed linear difference equation of higher order is considered and the
following result related to equation (1) on existence of a positive solution solution is proved.

Theorem 1.1 Let a ∈ N. Suppose that there exists a constant θ ∈ [0, 1) such that the function
p : Z∞

a → R+ satisfies

p(n) ≤ 1

4
+

1

16n2
+

θ

16(n lnn)2
(2)
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for every n ∈ Z∞
a . Then there exists a positive integer a1 ≥ a and a solution u = u(k),

k ∈ N(a1) of equation (1) such that the inequalities

0 < x(n) <

(
1

2

)n

·
√
n lnn

hold for every n ∈ Z∞
a1

.

Our goal is to answer an open question formulated in [1], whether all solutions of (1) are
oscillating if inequality (2) is replaced by an opposite inequality

p(n) ≥ 1

4
+

1

16n2
+

κ

16(n lnn)2
(3)

assuming κ ≥ 1 and n is sufficiently large.
From recent investigation performed in [2] follows that Theorem 1.1 holds even if θ = 1 and

consequently the answer is negative if we admit κ = 1 and equality instead of inequality in (3).
Below we prove that if the inequality in (3) is strong and κ > 1, then the answer is positive

- all solutions are oscillatory.
The proof of our main result will use a consequence from one of results of Y. Domshlak [6,

p. 69].

Lemma 1.2 Let q and r be arbitrary natural numbers such that r − q > 1. Let {ϕ(n)}∞1 be a
given sequence of positive numbers and ν0 be a positive number such that there exists a positive
number ν = ν(q, r) < ν0 satisfying

r∑
q+1

ϕ(n) ≤ π
ν
,
π

ν
≤

r+1∑
q+1

ϕ(n) ≤ 2π

ν
. (4)

Then, if p(q + 1) ≥ 0 and for n ∈ Zr
q+2

p(n) ≥ sin νϕ(n− 1) · sin νϕ(n+ 1)

sin ν[ϕ(n− 1) + ϕ(n)] · sin ν[ϕ(n) + ϕ(n+ 1)]
(5)

holds, then all solutions of the equation

x(n+ 1)− x(n) + p(n)x(n− 1) = 0

are oscillatory.

Moreover, we will use an auxiliary result giving the asymptotic decomposition of the logarithm
(cf. e.g. [5]). The symbols “ o ” and “O ” used below stands for the Landau order symbols.

Lemma 1.3 For fixed r, σ ∈ R \ {0} the asymptotic representation

lnσ(n− r)
lnσ n

= 1− rσ

n lnn
− r2σ

2n2 lnn
+
r2σ(σ − 1)

2(n lnn)2
+ o

(
1

n3

)

holds for n→∞.

14 volume 2 (2009), number 2
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2 Main Result

In this part we give sufficient conditions for all solutions of equation (1) to be oscillatory when
n→∞.

Theorem 2.1 Let a ∈ N be sufficiently large and κ > 1. Suppose that the function p : Z∞
a →

R+ satisfies

p(n) >
1

4
+

1

16n2
+

κ

16(n lnn)2
(6)

for every n ∈ Z∞
a . Then all solutions of equation (1) are oscillating when n→∞.

Proof. We set

ϕ(n) =
1

n lnn

and consider the asymptotic decomposition of ϕ(n− 1) when n is sufficiently large. Applying
Lemma 1.3 (for σ = −1 and τ = 1) we get

ϕ(n− 1) =
1

(n− 1) ln(n− 1)
=

1

n (1− 1/n) ln(n− 1)

=
1

n lnn

(
1 +

1

n
+

1

n2
+O

(
1

n3

))(
1 +

1

n lnn
+

1

2n2 lnn
− 1

(n lnn)2
+O

(
1

n3

))

=
1

n lnn

(
1 +

1

n
+

1

n lnn
+

1

n2
+

3

2n2 lnn
+

1

(n lnn)2
+O

(
1

n3

))
.

Similarly, applying Lemma 1.3 (for σ = −1 and τ = −1) we obtain

ϕ(n+ 1) =
1

(n+ 1) ln(n+ 1)
=

1

n (1 + 1/n) ln(n+ 1)

=
1

n lnn

(
1− 1

n
+

1

n2
+O

(
1

n3

))(
1− 1

n lnn
+

1

2n2 lnn
+

1

(n lnn)2
+O

(
1

n3

))

=
1

n lnn

(
1− 1

n
− 1

n lnn
+

1

n2
+

3

2n2 lnn
+

1

(n lnn)2
+O

(
1

n3

))
.

Next, we develop asymptotic decomposition for ϕ(n − 1)ϕ(n + 1) when n is sufficiently large.
Using previous decompositions we have

ϕ(n− 1)ϕ(n+ 1) =
1

(n lnn)2

×
(

1 +
1

n
+

1

n lnn
+

1

n2
+

3

2n2 lnn
+

1

(n lnn)2
+O

(
1

n3

))

×
(

1− 1

n
− 1

n lnn
+

1

n2
+

3

2n2 lnn
+

1

(n lnn)2
+O

(
1

n3

))

=
1

(n lnn)2

(
1 +

1

n2
+

1

n2 lnn
+

1

(n lnn)2
+O

(
1

n3

))
.
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Recalling the asymptotical decomposition of sinx when x → 0: sinx = x + O(x3) we get
(preserving the order of accuracy O(n−3))

sin νϕ(n− 1) = νϕ(n− 1) +O

(
ν3

n3

)
,

sin νϕ(n+ 1) = νϕ(n+ 1) +O

(
ν3

n3

)
,

sin ν[ϕ(n− 1) + ϕ(n)] = ν[ϕ(n− 1) + ϕ(n)] +O

(
ν3

n3

)
,

sin ν[ϕ(n) + ϕ(n+ 1)] = ν[ϕ(n) + ϕ(n+ 1)] +O

(
ν3

n3

)

when n→∞. Then it is easy to see that for the right-hand side of the inequality (5) we have

R :=
sin νϕ(n− 1) · sin νϕ(n+ 1)

sin ν[ϕ(n− 1) + ϕ(n)] · sin ν[ϕ(n) + ϕ(n+ 1)]

=

(
νϕ(n− 1) +O

(
ν3

n3

))
·
(
νϕ(n+ 1) +O

(
ν3

n3

))
(
ν[ϕ(n− 1) + ϕ(n)] +O

(
ν3

n3

))
·
(
ν[ϕ(n) + ϕ(n+ 1)] +O

(
ν3

n3

))

=R1 +O

(
ν2

n3

)
, n→∞

where

R1 :=
ϕ(n− 1)ϕ(n+ 1)

ϕ2(n) + ϕ(n)ϕ(n− 1) + ϕ(n)ϕ(n+ 1) + ϕ(n− 1)ϕ(n+ 1)
.

Moreover, for R1 we get an asymptotical decomposition when n→∞. We represent R1 in the
form

R1 =
ϕ(n− 1)ϕ(n+ 1)

ϕ2(n) + ϕ(n)ϕ(n− 1) + ϕ(n)ϕ(n+ 1) + ϕ(n− 1)ϕ(n+ 1)

=

ϕ(n− 1)ϕ(n+ 1)

ϕ2(n)

1 +
ϕ(n− 1)

ϕ(n)
+
ϕ(n+ 1)

ϕ(n)
+
ϕ(n− 1)ϕ(n+ 1)

ϕ2(n)

.

Because

ϕ(n− 1)ϕ(n+ 1)

ϕ2(n)
= 1 +

1

n2
+

1

n2 lnn
+

1

(n lnn)2
+O

(
1

n3

)
,

ϕ(n− 1)

ϕ(n)
= 1 +

1

n
+

1

n lnn
+

1

n2
+

3

2n2 lnn
+

1

(n lnn)2
+O

(
1

n3

)
,

ϕ(n+ 1)

ϕ(n)
= 1− 1

n
− 1

n lnn
+

1

n2
+

3

2n2 lnn
+

1

(n lnn)2
+O

(
1

n3

)
,
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R1 =

(
1 +

1

n2
+

1

n2 lnn
+

1

(n lnn)2
+O

(
1

n3

))

×
(

4 +
3

n2
+

4

n2 lnn
+

3

(n lnn)2
+O

(
1

n3

))−1

=
1

4

(
1 +

1

n2
+

1

n2 lnn
+

1

(n lnn)2

)(
1− 3

4n2
− 1

n2 lnn
− 3

4(n lnn)2

)
+O

(
1

n3

)

=
1

4

(
1 +

1

4n2
+

1

4(n lnn)2

)
+O

(
1

n3

)
.

Finalizing our decompositions we see that

R =
1

4

(
1 +

1

4n2
+

1

4(n lnn)2

)
+O

(
1

n3

)
+O

(
ν2

n3

)
.

It is easy to see, that the inequality (5) turns into

p(n) ≥ 1

4

(
1 +

1

4n2
+

1

4(n lnn)2

)
+O

(
1

n3

)
+O

(
ν2

n3

)
. (7)

We conclude that if p(n) satisfies (6) and ν ∈ (0, ν0] with ν0 fixed, then there exists an index
nν0 such that for n ≥ nν0 inequality (7) is satisfied. Then the assumption (5) of Lemma 1.2
holds. Inequalities (4) are valid as well because ν can be taken sufficiently small. This fact
ends the proof.

Remark 2.2 For further reading we recommend relevant literature, e.g. book [8] and, except
the above mentioned, papers [3, 4], [7], [9]–[14].
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[5] DIBLÍK, J., KOKSCH, N.: Positive solutions of the equation ẋ(t) = −c(t)x(t− τ) in the
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CONVERGENCE OF LINEAR MARKOV ITERATIONS

CARKOVA Viktorija, (LV), GOLDŠTEINE Jolanta, (LV),
SWERDAN Myhailo, (UA)

Abstract. This paper deals with the linear difference equation in Rn with coefficients
dependent on the Markov chain. It is proved that covariance matrices of solutions can
be analyzed using powers of a positive operator in a Banach space with a reproducing
cone. This property permits to formulate the necessary and sufficient mean square sta-
bility condition as a spectral problem or a problem of positive solvability of a specially
constructed linear operator equation. The paper discusses three possible approaches for
convergence analysis of defined by difference equation iterative procedure: mean square
stability analysis using the second Lyapunov method; mean square stability analysis using
Lyapunov index; reducibility method for moments of solutions, which permits approx-
imately to reduce mean square stability problem to analysis of equation with constant
coefficients.
Key words and phrases. Stochastic difference equations, Markov dynamical systems,
mean square stability.
Mathematics Subject Classification. Primary 60A05, 08A72; Secondary 28E10.

1 Introduction

The paper deals with asymptotic stability problem for linear difference equations with Markov
coefficients. A linear difference equation in Rn defined by equality:

xt = A(yt)xt−1, t ∈ N, (1)

where {A(y), y ∈ Y} is continuous n×nmatrix function on the metric compact Y, sup
y
||A(y)|| =

const < ∞; {yt, t ∈ N} is a homogeneous Feller Markov chain with phase space Y, invariant
measure μ(dy), and transition probability p(y, dz). Under initial conditions xk = x, yk = y the
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vector function xt(k, x, y) = X(t, k, y)x, whereX(t, k, y) :=
t∏

m=k+1

A(ym), satisfies the difference

equation (1) for any t ≥ k.
This paper discusses three possible approaches for convergence analysis of iterative procedure
(1) with Markov coefficients:

• mean square stability analysis of (1) using the second Lyapunov method;

• mean square stability analysis using Lyapunov index for (1);

• reducibility method for moments of equation (1) solutions, which permits to reduce (1)
to equation with constant coefficients.

2 Mean square stability analysis using the second Lyapunov method

The most powerful tool for asymptotic stability analysis of dynamical system is the Second
Lyapunov method. One should choose a nonnegative function V (x, y), satisfying an equality
V (x, y) = 0 if and only if x = 0 (called Lyapunov function) and analyze an expectation of
difference by virtue of the above system and Markov chain (or the Lyapunov operator L)
defined by equality (LV )(x, y) := E{V (xt, yt)/xt−1 = x, yt−1 = y} − V (x, y). If there exists
such Lyapunov function that |x|p ≤ V (x, y) ≤ c1|x|p, (LV )(x, y ≤ −c2|x|p for any x, y and
some positive p, c1, c2 then with increasing of t to infinity any solution of the above difference
equations exponentially tends to zero with probability one. The main idea of this approach is
to choose for (1) the Lyapunov function as a quadratic form V (x, y) := (v(y)x, x) and then to
analyze spectral properties of linear operator defined by an equality ((Av)(y)x, x) := (LV )(x, y).

Definition 2.1 The equation (1) is called as exponentially mean square stable if there exist
such constants c > 0 and λ ∈ (0, 1) that

E|xt(k, x, y)|2 ≤ cλt−k|x|2 (2)

for any y ∈ Y, x ∈ Rn, k ∈ N and t ≥ k.

Let V be the Banach space of symmetric uniformly bounded continuous n×n matrix functions
{q(y), y ∈ Y} with norm

||q|| := sup
y∈Y,||x||=1

|(q(y)x, x)|.

To derive mean square stability conditions for (1) special constructed operator equation for
quadratic functionals (q(y)x, x) with q ∈ V is used, where (., .) denotes a scalar product. Using
matrix A(y) and transition probability one can define on V the linear continuous operator

(A q)(y) :=

∫
Y

AT (z)q(z)A(z)p(y, dz), (3)

20 volume 2 (2009), number 2



Aplimat - Journal of Applied Mathematics

where top index T denotes transposition. It is easy to see that the above defined operator
leaves as invariant the cone [5]

K := {q ∈ V : inf
y∈Y,||x||=1

(q(y)x, x) ≥ 0}

with a set of inner points

o

K:= {q ∈ V : inf
y∈Y,||x||=1

(q(y)x, x) > 0}.

This cone permits to put space V in partial order using ”inequality” q1 << q2 if q2 − q1 ∈ K.

Obviously that q ∈
o

K if and only if there exists a such positive constant c(q) that q >> c(q)I
where I is the matrix unit of the space V.

Lemma 2.2 For any q ∈ V, t > k ≥ 0, y ∈ Y, and x ∈ Rn

((
A)tq

)
(y)x, x

)
= E {(q(yt+k)xt+k(k, x, y), xt+k(k, x, y))/yk = y} .

Using the definition of Cauchy matrix family one can rewrite the assertion of Lemma 1 in the
matrix form

(Atq)(y) = E
{
XT (t+ k, k, y)q(yt+k)X(t+ k, k, y)/yk = y

}
. (4)

Theorem 2.3 The next assertions are equivalent:

(i) equation (1) is exponentially mean square stable;

(ii) there exists such q ∈
o

K that
Aq − q = −I; (5)

(iii) maximal positive real spectrum point r{A} of operator A is less than one.

Proof. (i) −→ (ii). On the basis of an equality∥∥E
{
XT (t, 0, y)X(t, 0, y)

}∥∥ = sup
|x|=1

∣∣(E{
XT (t, 0, y)X(t, 0, y)

}
x, x)

∣∣ =

sup
|x|=1

|E {(X(t, 0, y)x,X(t, 0, y)x)}| = sup
|x|=1

E
{
|xt(0, x, y)|2

}
and mean square stability of (1) there exists the matrix function defined by formula

q(y) :=
∞∑

t=0

E
{
XT (t, 0, y)X(t, 0, y)

}

Because of identity X(k, k, y) ≡ I and equality

∞∑
t=0

E
{
XT (t, 0, y)X(t, 0, y)

}
= I +

∞∑
t=1

E
{
XT (t, 0, y)X(t, 0, y)

}
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one can write inequality q >> I. Therefore q ∈
o

K. To complete a proof of the first assertion
one can apply formula (4) with matrix function q(y) ≡ I and to write the equalities

Aq(y)− q(y) = A

( ∞∑
t=0

AtI

)
−

∞∑
t=0

AtI =

∞∑
t=0

At+1I −
∞∑

t=0

AtI = −I.

(ii) −→ (iii). Let q ∈
o

K satisfies (5). There exists such positive number c(q) that c(q)I <<
q << ||q||I and one can get from the equation (5) inequality Aq−q << −q/||q|| or Atq << rtq
for any t ∈ N where r = 1− ||q||−1 ∈ (0, 1). Therefore

AtI <<
1

c(q)
Atq <<

rt

c(q)
q << ||q|| r

t

c(q)
I

for any t ∈ N, t.i.
m∑

t=0

AtI <<
||q||
c(q)

m∑
t=0

rtI <<
||q||

c(q)(1− r)I

for any m ∈ N and

lim
m→∞

sup
|x|=1,y∈Y

m∑
t=0

|((Atg)(y)x, x)| <∞ (6)

for any g ∈ V. Because linear operator A leaves the solid cone K as invariant there exists [5]
such real spectrum point ρ(A) that ρ(A) = sup{|z|, z ∈ σ(A)} and real eigenfunction qρ ∈ K

corresponding to this spectrum point, t.i. Aqρ = ρ(A)qρ. Therefore if ρ(A) ≥ 1 one should
write

lim
m→∞

sup
|x|=1,y∈Y

m∑
t=0

((Atqρ)(y)x, x) = ∞.

This equality contradicts to (6).
(iii) −→ (i). Because operator A leaves the above defined cone K as invariant, there exists
[5] positive spectrum point r(A) satisfying equality r(A) = maxRe{σ(A)}. Therefore, if
r(A) < 1 then σ(A) ⊂ {z ∈ C : |z| < 1} and there exist [5] such constants c > 0, λ ∈ (0, 1)
that ||At|| ≤ cλt for any t ∈ N. Now one can write inequality

E|xt+k(k, x, y)|2 = ((AtI)(y)x, x) ≤ cλt|x|2

and proof is complete.

More simple stability criterion one can reach assuming that the sequence {yt, t ∈ N} consists of
independent random variables with the same distribution p(dy). In this case we will consider
a contraction Â of the defined by (3) operator A on the space Mn of symmetric n × n real
matrices

Âq := E{AT (yt)qA(yt)} =

∫
Y

AT (y)qA(y)p(dy)

Using cone of the positive defined matrices
o

Kn:= Mn

⋂ o

K
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Corollary 2.4 If the sequence {yt, t ∈ N} consists of independent random variables with the
same distribution p(dy) the next assertions are equivalent:

(i) equation (1) is exponentially mean square stable;

(ii) there exists such q ∈
o

Kn that
Âq − q = −I;

(iii) maximal positive real spectrum point r(Â) of operator Â is less than one.

3 Mean square Lyapunov index for Markov iterations

If (1) is equation with near to constant coefficients, i.e. matrix in the right part of equation (1)
has a form

A(y, ε) = A0 + εA1(y) + ε2A2(y) + . . . , (7)

the paper proposes an algorithm, which reduces the performances of the equation (1) second
moments dynamics to analysis of the operator A(ε) in finite dimensional subspace V(ε) ⊂ V.
This subspace as well as the restriction matrix Λ(ε) of the operator A on it may be defined by
the specially constructed basis B(ε), analytically dependent on ε. The maximal by modulus
real eigenvalue ρ(ε) of matrix Λ(ε) for sufficiently small ε > 0 coincides with similar eigenvalue
of operator A(ε). By terminology of [2] this number defines mean square Lyapunov index
by formula λ2(ε) = lim

t→∞
sup

k,y,|x|=1

1
2t
lnE{|xt(k, x, y)|2} and this number defines behavior of the

second moment E{|xt(k, x, y)|2} as t→∞: if λ2(ε) < 0 sequence E{|xt(k, x, y)|2} exponentially
decreases, if λ2(ε) > 0 - exponentially increases.
Let σ(A) be the spectrum and r(A) be the spectral radius of operator A. Substituting matrix
(7) in formula (3) one can decompose the operator family A(ε) by power of ε: A(ε) = A0 +
εA1+ε2A2+. . . with some bounded operators Ak, k = 1, 2, . . . and A0q :=

∫
Y

AT
0 q(z)A0p(y, dz).

It means that operator family A(ε) analytically depends on parameter ε and for finding mean
square Lyapunov index λ2(ε) we can apply methods and results of perturbation theory of linear
continuous operators [4] for decomposition of finite dimension spectral point r(A(ε)). Using the
definition of the operator A0 we can write that σ(A0) = {λ1 ·λ2 ·λ3 : λ1,2 ∈ σ(A0), λ3 ∈ σ(P )}.
According to this formula spectral radius of operator A0 is spectral point which corresponds
r(A0) = {max |λ|2 : λ ∈ σ(A0)}, and besides r(A0) ∈ σ(A0). Owing to analyticity of operator-
family A(ε) for sufficiently small values of ε there exists [4] part of spectrum σε of the operator
A(ε) satisfying the equality lim

ε→0
σε = {r2(A0)} where r(A0) = max{|λ| : λ ∈ σ(A0)}. The

root subspace V(ε) ⊂ V corresponding to the part of spectrum given by the above formula
has the same dimension m = dim V(0) for all sufficiently small ε ≥ 0 [4]. A basis B(ε) can
be constructed in V(ε) [4] of the form B(ε) = P(ε)B0, where P(ε) is the total projector
in V(ε) and B0 ⊂ M̂(Rn), where M̂(Rn) is a set of symmetric n × n matrices, because all
corresponding to r(A0) eigen-elements of the operator A0 are symmetric n×nmatrices. Because
the projector P(ε) is an analytic function of ε [4] one can look for the basis as decomposition
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B(ε) = B0 + εB1 + ε2B2 + . . .. Let Λ(ε) be the matrix of restriction of the operator A(ε) on
the subspace V(ε). Consequently this matrix can be obtained [4] from the expression

A(ε)B(ε) = B(ε)Λ(ε) (8)

where for the matrix Λ(ε) also can be used the decomposition Λ(ε) = Λ0 + εΛ1 + ε2Λ2 + . . ..
Therefore (8) can be rewritten into the form

(A0+εA1+ε
2A2+. . .)(B

0+εB1+ε2B2+. . .) = (B0+εB1+ε2B2+. . .)(Λ0+εΛ1+ε
2Λ2+. . .). (9)

We can look for Λ0,Λ1,Λ2, . . . by equating the coefficients corresponding to the same powers
of ε. We start with the system of m equations what corresponds to the zero power of ε in (9)
A0B

0−B0Λ0 = 0. One can satisfy these equations with any basis B0 = P(0)M̂(Rn) ⊂ M̂(Rn)
in the root subspace corresponding to eigenvalue r(A0)

2 and the matrix Λ0 of the operator A0

in this basis. Further we have to deal with the systems of equations which correspond to ε, ε2

and so on in (9). These systems have solutions if and only if its right part is orthogonal to m
linearly independent solutions of homogeneous adjoint equation.

4 Reducibility method for moments

The paper applies reducibility method for moments of equation (1) with near to constant
Markov coefficients (7) solutions, which permits to reduce (1) to equation with constant co-
efficients. It is assumed that a Markov sequence �y := {yt, t ∈ N} is given in a filtrated
probability space (Ω,F,Ft, P ), where {Ft} is a minimal filtration adapting it. To write an op-
erator equation for the first moments of (1) in a space of continuous n-dimensional mappings
C(Y → Rn) := Cn(Y), a linear continuous operator is introduced:

y ∈ Y, u ∈ Cn(Y) : (Au)(y) =

∫
Y

AT (z)u(z)p(y, dz). (10)

Lemma 4.1 For any s ∈ R, t > 0, v ∈ Cn(Y), x ∈ Rn

E{(Xs+t
s x, v(ys+t))/F

s} = (x, (Atv)(ys)).

It is said that the equation (1) is mean reducible, if such a continuous matrix function {B(y), y ∈
Y} and such a matrix Λ exist, that for all s ∈ N and t > s the following equality is fulfilled:
E{B(yt)xt/F

s} = Λt−sB(ys)xs.

Theorem 4.2 Let elements of sequence {yt, t ∈ N} be independent and identically distributed.
Then

(i) operator A leaves as invariant a subspace Rn ⊂ Cn(Y) and restriction Ā of operator A
in this subspace is defined by equality

v ∈ Rn : Āv = ĀTv,

where Ā = E{A(y0)};
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(ii) for each s ∈ N, each t > s and each Ft-adapted solution {xt, t ≥ 0} of equation (1) the
following equality is into force:

E{xt} = Āt−sE{xs}.

To define the reduced equation of the equation with near to constant matrix coefficients depen-
dent on Markov chain (7) the operator (10) is expressed in a form A(ε) = A0+εA1+ε2A2+. . .;
hereto, the operator A0 leaves as invariant the subspace Rn, and it can be represented as a
tensor product of operators A0 = P ⊗ AT

0 :

h ∈ C(Y), g ∈ Rn : A0(h⊗ g) = Ph⊗ AT
0 g,

where P is a Markov operator defined by formula

y ∈ Y, u ∈ C(Y) : (Pu)(y) =

∫
Y

u(z)p(y, dz).

The tensor representation of the operator allows to simplify the process of finding the spectrum
and resolvent, using the spectrum and resolvent of operators which define them. Due to the
exponential ergodicity of Markov chain, the spectrum of operator A0 can be expressed in a
form:

σ(A0) = {λ1λ2 : λ1 ∈ σ(P), λ2 ∈ σ(A0)} = σ(A0) ∪ σρ, (11)

where σρ(A0) := {λ1λ2 : λ1 ∈ σ(P), λ2 ∈ σρ}. The main assumption for mean reducibility of
the equation (1) is disjunction of sets in spectrum decomposition (11), that is, σ(A0)∩ σρ = ∅.
It makes possible to offer the asymptotical method which is based on the decomposition of the
spectral projection [4] of operator A(ε) by powers of a small parameter ε. The conjugated
space of Cn(Y) is a space of vector-valued measures C∗

n(Y), and the scalar product of elements
v ∈ Cn(Y) and g ∈ C∗

n(Y) is defined by the equality 〈g, v〉 :=
∫
Y

(g(dy), v(y)).

Lemma 4.3 If all the above mentioned assumptions are into force, then for sufficiently small
ε̄ > 0 and for all |ε| < ε̄, a difference equation is mean reducible; hereto, the matrix function
{B(y, ε), y ∈ Y} is a basis in operator A(ε) root subspace that corresponds to the part of the
spectrum σ0(ε) that is defined by equality lim

ε→0
σ0(ε) = σ0, but the matrix Λ(ε) is the operator’s

A(ε) restriction matrix to this root subspace. For each |ε| < ε̄, n × n-matrix function of the
basis {B(y, ε), y ∈ Y} and constant n×n-matrix Λ(ε) unambiguously are defined by the equality

y ∈ Y, |ε| < ε̄ : (A(ε)B)(y, ε) = B(y, ε)ΛT (ε). (12)

The decompositions of the basis matrix B(y, ε) and the matrix Λ(ε) are used in a form of
uniformly converged sequences by powers of a small parameter ε: Λ(ε) := Λ0 + εΛ1 + ε2Λ2 + . . .
and B(y, ε) := B0 + εB1(y) + ε2B2(y) + . . .. For each sufficiently small ε these decompositions
can be substituted in the expression (12). Equating the coefficients of equal powers of ε, the
equations can be obtained for finding the unknown elements of series Λ(ε) and B(y, ε):

A0B0 = B0Λ
T
0 (13)

volume 2 (2009), number 2 25



Aplimat - Journal of Applied Mathematics

A0B1 −B1Λ
T
0 = B0Λ

T
1 −A1B0 (14)

A0B2 −B2Λ
T
0 = B0Λ

T
2 + B1Λ

T
1 −A0B2 −A1B1 (15)

· · ·

Let us define an operator

y ∈ Y, v ∈ Ĉ : (Lv)(y) :=(A0v)(y)− v(y)AT
0 :=

:=

∫
Y

AT
0 (v(z)− v(y))p(y, dz) + AT

0 v(y)− v(y)AT
0 :=

:=(Hv)(y) + (Gv)(y) (16)

for the elements of continuous matrix functions space Ĉ. Looking at Ĉ as at Rn2
, similarly as

in the case with Cn(Y), count additive matrix-valued measure in Ĉ∗ can be found, which will
be a conjugated space; and the scalar product of elements g ∈ Ĉ∗ and v ∈ Ĉ can be defined by
formula 〈g, v〉 := Tr{

∫
Y

vT (y)g(dy)}, where Tr{} is a matrix trace. Taking unit matrix B0 := I

as basis in Rn and substituting it in the equation (13), ΛT
0 = AT

0 can be found, that is, Λ0 = A0.
Using Fredholm alternative about normal solvability, the necessary and sufficient conditions can
be verified to ensure that a solution exists. The matrix Λ2 can be found from the equation
(14), afterwards also B2(y) can be found. Then the next equations can be written for finding
Λ3,B3(y) until the necessary accuracy of decomposition of the matrix Λ(ε) is obtained. Since
Y is compact and matrices {Bj(y), j = 1, 2, . . .} are continuous, the elements of the obtained
basis B := I + εB1 + ε2B2 + . . . are linearly independent for sufficiently small ε.
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ON CONTINUOUS STOCHASTIC MODELING
OF HETEROSKEDASTIC CONDITIONAL VARIANCE

CARKOVS Jevgenijs, (LV), EGLE Aigars, (LV)

Abstract. The proposal continuous stochastic differential equation for conditional vari-
ance is constructed as a diffusion approximation of discrete ARCH process. In contrast to
classical auto regressive models with independent random perturbations our paper deals
with uncertainty given as a stationary ergodic Markov chain. The method is based on
stochastic analysis approach to finite dimensional difference equations with proportional
to small parameter ε increments. Writing a point-form solution of this difference equa-
tion as vertexes of a time-dependent continuous broken line given on the segment [0,1]
with ε-dependent scaling of intervals between vertexes and tending ε to zero we apply
probabilistic limit theorems for dynamical systems with rapid Markov switching. The dis-
tribution of stationary solution of resulting stochastic equation may be successfully used
for analysis of initial discrete model. This method permits to discuss a correlation effect
on log of cumulative excess return with stochastic volatility. model-based analysis shows
that it is important to take into account possible serial residual correlation in conditional
variance process. The proposed method is applied to investigate the GARCH(1,1) and
GARCH(2,1) processes under assumption that random variables are serially correlated.
As a result it is possible to find continuous stochastic differential equations these processes
converge to in distribution.
Key words and phrases. Markov dynamical system, diffusion approximation, ARCH
model
Mathematics Subject Classification. Primary 37H10,37N99; Secondary 34C29,37M10.

1 Introduction

Many econometrical studies [1] and [3] have documented that financial time series tend to be
highly heteroskedastic. This has many implications for many areas of macroeconomics and
finance, including the term structure of interest rates, option pricing and dynamic capital-asset
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pricing theory. In the same time econometricians have also been very active in developing
models of conditional heteroskedasticity. The most widely used models of dynamic conditional
variance have been the ARCH models first introduced by [2]. In most general form, a uni-
variate ARCH model makes conditional variance at time t a function of exogenous and lagged
endogenous variables, time, parameters and past residuals.

In contrast to the stochastic differential equation models so frequently used in theoretical
finance literature, ARCH models are discrete time stochastic difference equation systems. Em-
pirics have favored the discrete time approach of ARCH as virtually all time series data are
recorded only on discrete time intervals and a discrete time ARCH likelihood function is usually
easy to compute and maximize. By contrast, the likelihood of a nonlinear stochastic differential
equation system observed at discrete intervals can be very difficult to derive, especially when
there are unobservable state variables (like conditional variance) in the system.

Substantial work has been done on relation between the continuous time nonlinear stochastic
differential systems, used so much in theoretical literature, and the ARCH stochastic difference
equation systems, favored by empirics. Although the two literatures have developed quite
independently there have been attempts to reconcile the discrete and continuous models. Nelson
[4] is one of the first to partially bridge the gap by developing conditions under which ARCH
stochastic difference equation systems converge in distribution to Ito processes as the length of
the discrete time intervals goes to zero.

In his work [4] investigates the GARCH(1,1)-M process of [3] for the log of cumulative excess
return Yt:

rt+1 = rt + εγσ2
t + εσtZt (1)

σ2
t+1 = ε2(ω − θσ2

t ) + εασ2
tZt (2)

He derives diffusion approximation equation in a form of linear stochastic equation

dσ2
t = (ω − θσ2

t )dt+ ασ
2
t dw(t) (3)

and shows that in continuous time the stationary distribution for the GARCH(1,1) conditional
variance process is an inverted two parametric gamma.

In our paper we change the assumption about independence of random process in equations
(1)-(2) and assume that random coefficients in are serially correlated

rt+1 = rt + cσ2
t + σtyt (4)

σ2
t+1 = ε2(ω − θσ2

t ) + εασ2
t yt (5)

where discrete random process yt satisfies AR(1) equation

yt = ρyt−1 +
√

1− ρ2Zt (6)

For analysis of the above equations we apply method and results of the paper [5], which are
briefly stated in the first section. In the second section we have derived the stochastic approx-
imation equation for (5) under condition (6) in a form of stochastic equation

dσ2
t = (ω + (α2κ(ρ)− θ)σ2

t )dt+ α
√

1− 2κ(ρ)σ2
t dw(t) (7)
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with coefficients dependent on correlation parameter ρ from (6). Analyzing ergodic property
and stationary solution of this equation we have shown that it is important to take into account
possible serial correlation in conditional variance process. Under the same assumption that
random variables are serially correlated we analyze GARCH(2,1) conditional variance process

rt+1 = rt + cσ2
t + σtyt (8)

σ2
t+1 = ε2(ω − θσ2

t ) + εασ2
t yt (9)

yt = ω0 + α1yt−1 + α2yt−2 + β1yt−1Zt (10)

Equations (8) to (10) will be rewritten in a vectorial form and stochastic differential equations
will be developed using results found in [5].

2 Diffusion Approximation of Discrete Markov Dynamical Systems

2.1 Related Work

The problem of asymptotic analysis of dynamical systems under small random perturbations
has been discussed in many mathematical and engineering papers. Apparently, A.V. Skorokhod
was the first mathematician, which has proved that the probabilistic limit theorems may be
successfully used to approximate distributions of solutions of random dynamical systems by
the solutions of stochastic differential equations on any finite time interval (see bibliography in
[15],[16], and [19]). The above result at once has met with wide application in engineering and
economical papers (see [11], [8] [6], [12], [4] and references there). It should be mentioned that
in spite of the fact that the above result has been developed for the analysis of equations on
a finite time interval, the averaging and diffusion approximation procedures have been applied
in many applications for asymptotic stability analysis of possible stationary solutions, that is,
for analysis of differential equations as t → ∞. To prove the validity of this approach for
random dynamical systems with continuous trajectories the researchers had to use not only
a special type of limit theorem (see for example [10] and [7]) but also a stochastic version of
the Second Lyapunov method developed for stochastic Ito differential equations in [19]. But
most of dynamical systems of the recent Economics (see, for example, [13], [8], [12], [4] and
review there) require an extension of the above ”smooth” models to allow the phase motion to
have a jump type discontinuity. Some of results permissive to resolve this problem have been
developed by author in [18] for dynamical systems with switching in Markov time moments.
Proposal paper is devoted to similar approach to discrete Markov dynamical systems. This
problem is very important in contemporary financial econometrics for analysis of ARCH type
stationary iterative procedures (see, for example, [12] and [4]).

2.2 Probabilistic limit theorems and equilibrium stochastic stability

Let p(y, dz) is transition probability of Markov chain yt and P is Markov operator

(Pv)(y) :=

∫
Y

v(z)p(y, dz)
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defined on the space C(Y) of bounded continuous functions. We will assume that the spectrum
σ(P) has the simple eigenvalue 1, σ(P)�{1} ⊂ {z ∈ C : |z| < ρ < 1}, and probability
distribution {μ(dy)} is the solution of the equation P∗μ = μ, where P∗ is conjugate operator.
Averaging procedure by the above invariant measure of any dependent on Markov process
vector or matrix will be denoted with overline. Under these conditions one can extend [9] the
potential of the above Markov process and to define the linear continuous operator by equality

(Πv)(y) :=
∞∑

k=0

(Pkv)(y) (11)

on the space C̄(Y) of continuous functions v ∈ C(Y) with zero average v̄ :=
∫
Y

v(y)μ(dy). This

means that the equation Pg − g = −v with v ∈ C̄(Y) has unique solution (11) in C̄(Y). Using
the above Markov chain one can define on the segment [0, 1] step processes

s ∈ [tε2, (t+ 1)ε2) : Yε(s) := yt (12)

If Ft ⊂ F, t ≥ 0 is minimal filtration for stationary process yt then for any t ≥ 0 and s ∈ [tε2, (t+
1)ε2) random vectors Xε(s) and Yε(s) are Ft-measurable. To avoid cumbersome formulae we
will denote conditional expectation E{ξ/Ft}|xt=x,yt=y in abridged form Et

x,y{ξ}.

2.3 Derivation of diffusion approximation formula

In this subsection we will assume that f̄1(x) ≡ 0. Using the solution xt, t ∈ N of difference
equation

xt+1 = xt + εf1(xt, yt) + ε2f2(xt, yt), (13)

with initial condition x0 = x and Markov process yt one can define the broken lines by formulae

s ∈ [tε2, (t+ 1)ε2] : Xε(s) = (xt+1 − xt)(sε
−2 − t) + xt (14)

for all t ∈ [0, N(ε−2)], where N(α) is integer part of number α, and step process

s ∈ [tε2, (t+ 1)ε2) : Yε(s) := yt (15)

for all t ∈ [0, N(ε−2)]. Not so difficult to be certain of Markov properties for the pare
{Xε(s), Yε(s), 0 ≤ s ≤ 1}. Therefore under assumption that ε→ 0 one can apply the Skorokhod
limit theorems from [15] and [16] for sequences of Markov processes and look for diffusion ap-
proximation of {Xε(s), 0 ≤ s ≤ 1} if the latter exists. Much as it has been done in [18] for
jump type Markov processes in our case for any arbitrary twice continuous differentiable on x
function v(x) one has to look for Lyapunov function in a form of decomposition

vε(x, y) := v(x) + ε[((Πf1)(x, y),�)v](x, y) + ε2v̂(x, y) (16)

with some smooth function v̂(x, y). Here and further �v(x) is gradient and (·, ·) is scalar
product in Rd. Now one should compute derivative

(L(ε)vε)(x, y) :=

lim
δ↓0

1

δ
Et

x,y{vε(Xε(s+ δ), Y ε(s+ δ))− vε(Xε(s), Y ε(s))} =

1

ε2
Et

x,y{vε(xt+1, yt+1)− vε(x, y) + o(ε2)} (17)
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for all x ∈ Rd, y ∈ Y, t ≥ 0 and s ∈ [tε2, (t+ 1)ε2), and chose in (16) function v̂(x, y) in such a
way as to exist limit

lim
ε→0

(L(ε)vε)(x, y) = (Lv)(x) (18)

As it will be shown later right side of the above equation has a form of diffusion operator
applied to function v(x):

(Lv)(x) = {(a(x),�) + (σ(x)�,�)}v(x) (19)

with vector a(x) and positive defined symmetric matrix σ(x). To derive the above formula one
has to present operator L(ε) accurate within 0(ε)

L(ε) = 1
ε2 (P − I) + 1

ε
(f1(x, y),�)P +

(f2(x, y),�)P + 1
2
(f1(x, y),�)2P + 0(ε) (20)

to employ (20) to (16) and to decompose resulting function by powers of ε accurate within 0(ε):

(L(ε)vε)(x, y) =
1

ε2
(P − I)v(x)+

1

ε
[(f1(x, y),�)v(x) + (P − I)((Πf1)(x, y),�)v(x)] +

(f2(x, y),�)v(x) +
1

2
(f1(x, y),�)2v(x)]+

(f1(x, y),�)P[(f1(x, y),�)v(x)] + (P − I)v̂(x, y) + 0(ε)

Therefore using obvious equalities (P − I)Π = −I,
(P − I)v(x) = 0 and formula (18) one can write equation

Lv(x) = (f2(x, y),�)v(x) +
1

2
(f1(x, y),�)2v(x) +

(f1(x, y),�)[(PΠf1(x, y),�)v(x)] + (P − I)v̂(x, y)

with unknown function v̂(x, y). As it has been mentioned at the beginning of this subsection
the above equation relative to v̂(x, y) has solution

v̂(x, y) = Π{(f2(x, y),�)v(x) +
1

2
(f1(x, y),�)2v(x) +

(f1(x, y),�)[(PΠf1(x, y),�)v(x)]− Lv(x)} (21)

if and only if

Lv(x) = {(f2,�) +
1

2
(f1,�)2 + (f1,�)[(PΠf1,�)}v(x) (22)

where overline denotes averaging by measure μ. This equation one can write in a form (19)
using notations

a = f 2 + [PΠDf1]Tf1

σ =
1

2
[f1fT

1 + f1PΠfT
1 + (PΠf1)fT

1 ] (23)
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where D is Frechet derivative by x and upper index T denotes transposition. To write this
equation in a form

dX(t) = a(X(s))ds+
d∑

k=1

σk(X(s))dWk(s) (24)

with initial condition X(0) = x0, where vector-functions a(x) and σk(x), k = 1, 2, ..., d are
defined based on averaging by measure μ of functions fj(x, y), j = 1, 2 and its derivatives, and
{Wk, k = 1, 2, ..., d} are independent standard Wiener processes, one has to find d dependent
on x vectors σk defined by equation

d∑
k=1

σk(x)σ
T
k (x) = σ(x)

As it has been mentioned in [19] this equation has solution for any positive defined matrix σ(x).

2.4 Averaging and normalized deviations

Let us remind of assumption f̄1(x) ≡ 0 which permits in previous subsection to derive formulae
(22) and (23). Otherwise one may not divide segment [0, 1] by intervals of length ε2 because
Πf1(x, y) does not exist and therefore there are singularity in the definition of operator (17)
as ε→ 0. To apply a diffusion approximation in this case one has to find solution of averaged
equation

x̄t+1 = x̄t + εf̄1(x̄t) (25)

and to derive an asymptotic formula for so called normalized deviations

zt :=
xt − x̄t√
ε

(26)

Substituting xt =
√
εzt + x̄t in (13)

zt+1 = zt + δg1(x̄t, yt) + δ2[Df1(x̄t, yt)]zt + o(δ2), (27)

where δ =
√
ε, g1(x, y) = f1(x, y) − f̄1(x), one can apply to system (25)-(27) approach of

previous subsection. The sequence (26) gives rise to random processes

Zδ(s) =
Xδ(s)− X̄δ(s)

δ

where Xδ(s) and X̄δ(s) are defined in the same way like (14) for all s ∈ [tδ2, (t+ 1)δ2) and any
t ∈ [0, N(δ−2)]. After substitution Zδ(s) instead of Xε(s), [Df1(X̄(s), Y δ(s))]Zδ(s) instead of
f2(Xε(s), Yε(s)) and g1(X̄(s), Y δ(s)) instead of f1(Xε(s), Yε(s)) in corresponding formulae and
vanishing δ one can approximate probability distribution PZ

δ of process Zδ(s) by probability
distribution PZ of process Z satisfying stochastic differential equation equation

dZ(s) = Df̄1(X̄(s))Z(s)ds+
d∑

k=1

σk(X̄(s))dWk(s)
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with initial condition X̄(0) = x0, where {Wk(s), k = 1, 2, ..., d} are independent standard
Wiener processes, and vectors {σk, k = 1, 2, ..., d} satisfy an equality

d∑
k=1

σk(x)σ
T
k (x) = [g1gT1 + g1PΠgT1 + (PΠg1)gT1 ](x)

Deterministic function X̄(s) one can find as the solution of ordinary differential equation

dX̄(s) = f̄1(X̄(s))ds

Roughly speaking for sufficiently small ε one can approximate distribution of the sequence
{xt, 0 ≥ t ≥ N(ε−1)} by distribution of sequence {X(tε) +

√
εZ(tε), 0 ≥ t ≥ N(ε−1)}.

2.5 Equilibrium asymptotic stability

As it has been mentioned in the Section 2 some of application iterative procedures analysis
require asymptotic analysis of equation (13) as t → ∞. For example discussing diffusion
approximation approach to GARCH time series authors of papers [4] and [12] indicate this
problem in view of the approximation and asymptotic stability analysis of stationary conditional
variance. In previous section we have derived an approximate distribution of sequence {xt, 0 ≤
t ≤ N} for any finite integer number N by distribution of solution of stochastic differential
equation {X(s), 0 ≤ s ≤ 1} but for the above mentioned asymptotic analysis as t→∞ one has
to deal with equation (24) with unrestrictedly large s. Besides there is a problem of legality
results which are based on the diffusion approximation as s → ∞. This subsection is devoted
to the above problem.
Let point x = 0 be an equilibrium of iteration procedure (13), i.s. f1(0, y) ≡ 0 and f2(0, y) ≡ 0.
If for any η > 0 there exists such a neighborhood Ur := {x ∈ Rd : |x| < r} that any starting in
Uη solution xt of (13) does not leave Ur and tends to zero as t → ∞ with probability greater
than 1 − η the above equilibrium is called asymptotic stochastically stable. As it has been
shown in [14] for equilibrium stability analysis one can employ the second Lyapunov method
with Lyapunov operator defined by formula

(Lv)(x, y) := E0
x,y{v(x1, y1)} − v(x, y)

and Lyapunov functions satisfying inequality

|x|p < v(x, y) < c|x|p

with some positive p a c ≥ 1. If there exists such a Lyapunov function v(x, y) that

(Lv)(x, y) < −γ|x|p

with γ ∈ (0, 1) then [14] equilibrium is asymptotic stochastically stable and Ex,y{|xt|} ≤
M |x|p exp{−ρt} with some positive constantsM and ρ. Besides under smoothness assumptions
of the Section 1 on vectors f1(x, y) and f2(x, y), this equilibrium is asymptotic stochastically
stable if and only if [14] the same property has the trivial solution of its linear approximation

x̃t+1 = x̃t + εf̃1(x̃t, yt) + ε2f̃2(x̃t, yt) (28)
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where f̃j(x, y) = (Dfj)(0, y)x, j = 1, 2. Therefore for asymptotic analysis of (13) as t→∞ one
can apply formulae (19) with (16), (21), (22), and (23) substituting linear on x ∈ Rd functions
f̃j(x, y) instead of fj(x, y), j = 1, 2 and rewriting equation (24) in a form of linear stochastic
Ito equation

dX̃(s) = AX̃(s))ds+
d∑

k=1

BkX̃(s)dWk(s) (29)

The same result like mentioned above for Markov iterations (28) one can find in [19] for stochas-
tic differential equation (29): trivial solution of (29) is asymptotic stochastically stable if and
only if there exists such twice continuous differentiable Lyapunov function V (x) that

|x|p ≤ V (x) ≤ h1|x|p, LV (x) ≤ −h2|x|p (30)

and ||Dl �v(x)|| ≤ h3|x|p−l−1, l = 1, 2, 3 for some p > 0, positive constants hj, j = 1, 2, 3. and
any x ∈ Rd. Now for analysis of asymptotic behaviour of linear iteration (28) one can apply
the second Lyapunov method with function

V ε(x, y) :=

V (x) + ε[((Πf̃1)(x, y),�)V ](x, y) + ε2V̂ (x, y) (31)

where V (x) satisfies inequalities (30) and

V̂ (x, y) = Π{(f̃2(x, y),�)V (x) +
1

2
(f̃1(x, y),�)2V (x) +

(f̃1(x, y),�)[(PΠf̃1(x, y),�)V (x)]} (32)

Owing to linearity of functions f̃j(x, y), j = 1, 2 and definition of LV (x) for all sufficiently small
ε > 0 there exist such positive constants hj, j = 4, 9 that the above defined functions satisfy
inequalities

h4|x|p ≤ |V̂ (x, y)| ≤ h5|x|p,
h6|x|p ≤ |[((Πf̃1)(x, y),�)V ](x, y)| ≤ h7|x|p

|V ε(x, y)− V (x)| ≤ εh8|x|p

and
|(L(ε)V ε)(x, y)− LV (x)| < εh9|x|p

Therefore if the trivial solution of diffusion approximation is asymptotically stable then there
exists Lyapunov function satisfying (30) and for stability analysis of (28) one can use function
(31):

(LV ε)(x, y) = ε2(L(ε)V ε)(x, y) ≤
≤ ε2LV (x) ≤ ε2(−h2 + εh9)|x|p

This inequality convinces of asymptotical stochastic stability for trivial solution of difference
equation (28) if ε is sufficiently small.
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3 Markov type GARCH models

3.1 Continuous Stochastic Model of Conditional Variance Dynamics

In papers [12] and [4] the authors discuss a problem of diffusion approximation for very popular
in contemporary econometrics GARCH (General AutoRegressive Conditional Heteroscedastic)
process for conditional time series variance. The paper [4] deals with model given in a form of
first order linear difference equation

σ2
t+1 = ωh + σ2

t [βh + h−1αhhZ
2
t ] (33)

where h is small positive parameter, {hZt, t ∈ Z} is sequence of i.i.d. random variables with
zero mean, variance E{hZ

2
t } = h, and fourth moment E{hZ

4
t } = 3h2. Under assumptions

1− αh − βh = hθ + o(h), ωh = hω + o(h), αh =

√
h√
2
α+ o(h)

author of paper [4] derives diffusion approximation equation in a form

dσ2
t = (ω − θσ2

t )dt+ ασ
2
t dW (t) (34)

To compare this result with our derived formulae one can denote

h = ε2, xt = σ2
t , yt =

hZ
2
t − 1√
2h

and rewrite equation (33) in a form of difference equation (13) accurate within ε-items of second
order

xt+1 = xt + ε2[ω − θxt] + εαytxt (35)

Let yt be stationary Markov process with the same unconditional moments as hZ2
t −1√
2h

, that is,

Eyt = 0,Ey2t = 1 and correlation function C(k) = E{ytyt+k} for k ∈ N. Following our proposal
method of diffusion approximation one should for this equation calculate parameters (23) with
f1(x, y) = αyx, f2(x, y) = ω − θx. By definition

a(x) = ω − θx+ α2x

∞∑
l=1

⎧⎨
⎩
∫
Y

E0
y{yyl}μ(dy)

⎫⎬
⎭ =

= ω +

[
α2

∞∑
k=1

C(k)− θ
]
x

σ2(x) = α2x2

∫
Y

y2μ(dy) + 2α2x2

∞∑
k=1

C(k) =

α2x2

[
Var{yt}+ 2

∞∑
k=1

C(k)

]
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If {yt, t ∈ Z} are independent random variables with zero mean and unit variance like it has

been assumed in [4] we have derived equation (34) because C(k) ≡ 0. If κ :=
∞∑

k=1

C(k) �= 0 one

should apply diffusion approximation for GARCH(1,1)-process in a following form

dσ2
t = (ω + (α2κ− θ)σ2

t )dt+ α
√

1 + 2κσ2
t dW (t) (36)

As it has been proved this equation one can use also for analysis of (33) as t→∞. According
to [19] if

α2κ− θ − α
2(1 + 2κ)

2
= −θ − α

2

2
< 0

there exists stationary solution ŝ2t of the above equation and deviations zt := s2t − ŝ2t of any
other solution from this stationary process exponentially tend to zero as t→∞. In spite of the
fact that process yt has nonzero correlation this result no differs from similar result of the paper
[4]. But to approximate stationary process for GARCH(1,1) with Markov process yt instead of
i.i.d. sequence one has to deal with stationary solution of equation (36) where κ �= 0. As it
has been derived by E.Wong [17] for linear stochastic Ito equation (36) the stationary process

defined σ−2
t has density function f(x) = srx(r−1)

Γ(r)
e−sx where r = 1 + 2(θ−α2κ)

α2(1+2κ)
,s = 2ω

α2(1+2κ)
or

stationary variance ŝ2 has distribution defined by formula

P{ŝ2 < z} = 1−
∫ 1/z

0

f(x)dx, f(x) =
srx(r−1)

Γ(r)
e−sx (37)

This convince of possible considerable correlation affect on the asymptotic approximation of
conditional variance stationary distribution.

3.2 Diffusion Model of Stock Return with Stochastic Volatility

The simplest stock return St mathematical model involving assumption on conditional het-
eroskedasticity of interest rate ht variance σ2

t under commonly used condition on risk neutrality
of probabilistic measure P may be written ([2],[4]) as the system of two difference equation

St+1 = St(1 + εσ2
t yt+1), (38)

σ2
t+1 = σ2

t + ε2[ω − θσ2
t ] + εα(y2t+1 − 1)σ2

t (39)

where yt is Gaussian random sequence with zero mean and unit variance. When it is considered
that these random numbers do not independent we will use for yt equation of type AR(1):

yt+1 = ρyt +
√

1− y2t ξt+1 (40)

where {ξt} is i.i.d. Gaussian sequence, Eξt = 0,Eξ2t = 1. To employ formulae (refLL) let us
denote x1t = St, x2t = σ2

t and

�xt =

(
x1t

x2t

)
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and rewrite equations (38) in a vector form

�xt+1 = �xt + εyt+1

(√
x2t 0
0 α

)
�xt + ε2

(
0
ω

)
− ε2

(
0 0
0 θ

)
�xt (41)

Now one can use formula (refLL) with

f1 =

(
x1ty1t

√
x2t

αx2t(y
2
t − 1)

)
, f2 =

(
0

ω − θx2t

)

applying in formulae (refLL) an averaging by invariant distribution N(0, 1) of Markov chain
(40) and to write a final limit stochastic equation for vector �xt:

d�xt = a(�xt)dt+ b1(�xt)dw1(t) + b2(�xt)dw2(t)

where

a(�x) =

(
x1x2

ρ
1−ρ

ω + (α2 ρ2

1−ρ2 − θ)x2 +
x2
1

2

)
(42)

vectors b1, b2 are defined by equality

b1(�x)b
T
1 (�x) + b2(�x)b

T
2 (�x) =

(
x2

1x2
3+ρ
1−ρ

0

0 2α2x2
2

3+ρ2

1−ρ2

)
(43)

This means that stock return St and conditional variance σ2
t have dynamics approximately

describes by system of Ito stochastic differential equations

dSt = Stσt
ρ

1− ρdt+ Stσt

√
3 + ρ

1− ρdw1(t), (44)

dσ2
t = {ω + (α2 ρ2

1− ρ2 − θ)σ
2
t + S2

t

ρ

2(1− ρ)}dt+ ασ
2
t

√
2(3 + ρ2)

1− ρ2 dw2(t) (45)

where w1(t) and w2(t) are independent standard Wiener processes.
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APPLICATION OF INTEGRAL INEQUALITIES
IN THE THEORY

OF INTEGRAL AND INTEGRODIFFERENTIAL EQUATIONS

FAJMON Břetislav, (CZ), ŠMARDA Zdeněk, (CZ)

Abstract. In this paper boundedness and asymptotic stability of solutions of certain
classes of integral and integrodifferential equations are investigated. By means of ineguali-
ties with iterated integral there are determined conditions of boundedness and asymptotic
stability of solutions of nonlinear Volterra integral equations and using of Pachpatte’s
integral inequalities sufficient conditions of boundedness of solutions of certain class of
nonlinear integrodifferential equations are given.
Key words and phrases. Inequalities with iterated integrals, boundedness and asymp-
totic stability of solutions, integral and integrodifferential equations.
Mathematics Subject Classification. 45J05.

1 Introduction

Integral inequalities involving functions and their derivatives have played a significiant role
in the developments of various branches of analysis. Pachpatte[6-10] has given some integral
inequalities of the Gronwall-Bellman type involving functions and their derivatives which are
useful in the investigation of boundedness and stability of solutions of differential, integral and
integrodifferential equations. Haraux[4] used the modified Gronwall-Belmann inequality with
logarithmic factor in the integrand to the study of wave equation with logarithmic nonlinearity.
Engler[2] used the slight variant of the Haraux’s inequality for determination of global regular
solutions of the dynamic antiplane shear problem in nonlinear viscooelasticity. Dragomir[1]
applied his inequality to the stability, boundedness and asymptotic behaviour of solutions of
nonlinear Volterra integral equations.

In this paper we present applications of some above mentioned inequalities to certain integral
and integrodifferential equations.
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2 Bounds of solutions of integrodifferential equations

Consider the following integrodifferential equation

x′(t)− F
(
t, x((t)),

∫ t

0

k(t, s, x((s))ds

)
= h(t), x(0) = x0, (1)

where h : R+ → R, k : R+ ×R+ ×R→ R, F : R+ ×R2 → R are continuous functions. Some
classes of equation (1) were investigated by Yang[11].
In the following we will suppose that the solution x(t) of (1) exists on R+.

Now for the determination of a bound of the solution x(t) of (1) we utilize Pachpatte’s
inequality [10] which we can formulate as the following theorem.

Theorem 2.1 Let u, f, g, h be nonnegative continuous functions defined on R+ and c be a
nonnegative constant.

(I) If

u2(t) ≤ c2 + 2

∫ t

0

[
f(s)u(s)

(
u(s) +

∫ s

0

g(τ)u(τ)dτ

)
+ h(s)u(s)

]
ds, (2)

for t ∈ R+, then

u(t) ≤ p(t)
[
1 +

∫ t

0

f(s) exp

(∫ s

0

[f(τ) + g(τ)]dτ

)
ds

]

where

p(t) = c+

∫ t

0

h(s)ds (3)

for t ∈ R+.

(II) If

u2(t) ≤ c2 + 2

∫ t

0

[
f(s)u(s)

(∫ s

0

g(τ)u(τ)dτ

)
+ h(s)u(s)

]
ds,

for t ∈ R+, then

u(t) ≤ p(t) exp

(∫ t

0

f(s)

(∫ s

0

g(τ)dτ

)
ds

)
,

for t ∈ R+, where p(t) is defined by (3).

Pachpatte [8] applied these inequalities to obtain bounds of solutions of some classes of ordinary
differential equations in the form

x′′ = G(t, x(t), x′(t)),

with initial conditions
x(t0) = x0, x

′(t0) = x1,

where G : I×R×R→ R is a continuous function and x0, x1 are constants, I = [t0,∞), t0 ≥ 0.
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Theorem 2.2 Suppose that

|k(t, s, x(s))| ≤ f(t)g(s)|x(s)|, (4)

|F (t, x(t), v)| ≤ f(t)|x(t)|+ |v|, (5)

where f and g are real-valued nonnegative continuous functions defined on R+. Then the
solution x(t) of (1) is bounded and

|x(t)| ≤ p1(t)
[
1 +

∫ t

0

f(s) exp

(∫ s

0

[f(τ) + g(τ)]dτ

)
ds

]
, (6)

where

p1(t) = |x0|+
∫ t

0

|h(s)|ds,

for t ∈ R+ .

Proof. Multiplying both sides of equation (1) by x(t) , substituting t = s and integrating from
0 to t we have

x2(t) = x2
0 + 2

∫ t

0

[
x(s)F

(
s, x(s),

∫ s

0

k(s, τ, x(τ))dτ

)
+ h(s)x(s)

]
ds. (7)

From (4),(5) we get

|x(t)|2 ≤ |x0|2 + 2

∫ t

0

[
|x(s)|

(
f(s)|x(s)|+

∫ s

0

|k(s, τ, x(τ))|dτ
)

+ |h(s)||u(s)|
]
ds

≤ |x0|2 + 2

∫ t

0

[
|x(s)|

(
f(s)|x(s)|+

∫ s

0

f(s)g(τ)|x(τ)|dτ
)

+ |h(s)||u(s)|
]
ds.

Thus

|x(t)|2 ≤ |x0|2 + 2

∫ t

0

[
f(s)|x(s)|

(
|x(s)|+

∫ s

0

g(τ)|x(τ)|dτ
)

+ |h(s)||x(s)|
]
ds. (8)

The proof follows from Theorem 2.1 (I) and inequality (8).

3 Boundedness and asymptotic stability of solutions of integral equations

Consider the nonlinear Volterra integral equation of the form

up(t) = f(t) +

∫ t

0

k(t, s)g(s, u(s))ds, (9)

where f : R+ → R, k : R+ × R+ → R, g : R+ × R → R are continuous functions and p > 1
is a constant. Okrasinski[5] studied the problem of existence and uniqueness of solutions of
equation (9) in the form

up = k ∗ u+ f, p > 1,
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where k, f are known smooth functions depending on physical parameters. Pachpatte[6] inves-
tigated the boundedness and asymptotic behaviour of solutions of (9) using inequalities derived
by himself in [6].

For an interesting discussion concerning the occurence of equation (9) in the theory of water
percolation phenomena and its physical meaning, see Okrasinski[5] and Pachpatte[10].

Now suppose u(t) ≥ 0, g ≥ 0, ri ≥ 0, i = 1, 2, . . . , n − 1 are continuous functions defined
on R+ and let p > 1 be a constant.
Put

M [t, r, g(tn)u(tn)] =M [t, r1, . . . , rn−1, g(tn), u(tn)]

=
∫ t

0
r1(t1)

∫ t1
0
r2(t2) . . .

∫ tn−2

0
rn−1(tn−1)

∫ tn−1

0
g(tn)u(tn)dtndtn−1 . . . dt2dt1.

In the following it is assumed that every solution u(t) of (9) exists on R+.
For investigation of boundedness and asymptotic behaviour of solutions of (9) we use Pach-
patte’s iterated integral inequalities (see[10]) which we can formulate as follows:

Theorem 3.1 . Assume
up(t) ≤ c+M [t, r, g(tn), u(tn)],

for t ∈ R+ where c ≥ 0 is a constant.
Then

u(t) ≤ [c(p−1)/p + ((p− 1)/p) M [t, r, g(tn)]](p−1)/p.

By virtue of Theorem 3.1 we get the following results:

Theorem 3.2 Suppose

|f(t)| ≤ c1, |k(t, s)| ≤ c2, |g(t, u)| ≤ r(t)|u|, (10)

where c1, c2 are nonnegative constants, r : R+ → R+ is a continuous function. Then the
solution u(t) of (9) is bounded and

|u(t)| ≤
[
c
(p−1)/p
1 + ((p− 1)/p)

∫ t

0

c2r(s)ds

]1/(p−1)

. (11)

Proof. From (10) we obtain

|u(t)|p ≤ c1 +

∫ t

0

c2r(s)|u(s)|ds

By Theorem 3.1 for n = 1 we get inequality (11). The proof is complete.

Theorem 3.3 Suppose

|f(t)| ≤ ce−pt, |k(t, s)| ≤ h(s)e−pt, |g(t, u)| ≤ r(t)|u|, (12)

where c is a nonnegative constant, r(t) is as defined above, h : R+ → R+ is a continuous
function and ∫ ∞

0

h(s)r(s)e−sds <∞. (13)

Then the solution u(t) of (9) is asymptotic stable.
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Proof. From (12) we get

|u(t)|p ≤ c1e−pt +

∫ t

0

h(s)e−ptr(s)|u(s)|ds.

Then

(et|u(t)|)p ≤ c1 +

∫ t

0

h(s)e−sr(s)(es|u(s)|)ds

By Theorem 3.1 for n=1 we obtain

et|u(t)| ≤
[
(c1)

(p−1)/p + (p− 1)/p

∫ t

0

h(s)r(s)e−sds

]1/(p−1)

.

Thus

|u(t)| ≤ e−t

[
(c1)

(p−1)/p +
p− 1

p
K

]1/(p−1)

,

where K > 0 is a constant which bounds integral (13) .
Put

c∗ =

[
(c1)

(p−1)/p +
p− 1

p
K

]1/(p−1)

,

then
|u(t)| ≤ c∗e−t

which means that the solution u(t) of (9) approaches zero as t→∞ . The proof is complete.
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DISCRETE MAXIMUM PRINCIPLES
FOR PARABOLIC PROBLEMS

WITH GENERAL BOUNDARY CONDITIONS
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Abstract. In this work, for the first time with respect to parabolic problems and discrete
maximum principles, the cases with the mixed boundary conditions and an additional
reactive term presented in the governing equation are considered. We derive the relevant
continuous maximum principle, and also give its discrete analogue, when simplicial finite
elements and the θ time discretization method are used.
Key words and phrases. parabolic problem, maximum principle, linear finite elements,
discrete maximum principle
Mathematics Subject Classification. 65M60, 65M50, 35B50

1 Introduction

Consider the following parabolic problem with general boundary conditions: Find a function
u = u(t, x) such that

∂u

∂t
− bΔu+ cu = f in QT := (0, T )× Ω, (1)

u = g on SD
T := (0, T )× ∂ΩD, (2)

b∇u · ν = q on SN
T := (0, T )× ∂ΩN , (3)

b∇u · ν + σu = r on SR
T := (0, T )× ∂ΩR, (4)
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u|t=0 = u0 in Ω, (5)

where Ω ⊂ Rd, d = 1, 2, 3, . . . , is a bounded polytopic domain with Lipschitz boundary ∂Ω.
Assume that ∂Ω = ∂ΩD∪∂ΩN∪∂ΩR, where ∂ΩD �= ∅ and is closed, ∂ΩN and ∂ΩR are mutually
disjoint measurable open sets. The subscripts (or superscripts) D, N , and R always stand for
Dirichlet, Neumann, and Robin types of boundary conditions, respectively, ν is the outward
normal to ∂Ω, T > 0, the problem coefficients are constant and such that

b > 0, c ≥ 0, σ > 0, q < 0, (6)

and f , g, q, r, u0 are given functions. For any t ∈ (0, T ) let Qt stand for the cylinder (0, t)×Ω,
and let Γ0 := {0} × Ω denote its bottom. Moreover, let us define Qt := (0, t] × Ω, SD

t
:=

[0, t]× ∂ΩD, SN
t

:= [0, t]× ∂ΩN , and SR
t

:= [0, t]× ∂ΩR.
In the sequel we assume that all the given functions are sufficiently smooth so that the

classical solution of problem (1)–(5) exists in the space C1,2(QT )∩C0,1(QT ∪SD
T
∪SN

T
∪SR

T
∪Γ0)

and it is unique.
Then an upper bound for the solution can be given as follows [3]: For all t1 ∈ (0, T ), it

holds

u(t1, x) ≤ max{0; max
Γ0∪SD

t1

u}+ max{0; max
SR

t1

r

σ
}+ t1 max{0; max

Qt1

f}. (7)

Inequality (7), under the assumptions (6), represents the form of the continuous maximum
principle that we shall deal with for the above defined parabolic problem (1)–(5).

2 Linear finite element discretization

In the sequel we consider the following finite element (FE) discretization. Let

H1
∂ΩD

(Ω) = {v ∈ H1(Ω) | v|∂ΩD
= 0}. (8)

We assume that a simplicial partition Th of Ω is given, where h denotes the standard dis-
cretization parameter (the maximal diameter of elements from Th), and that the partition is
conforming and is such that any facet of any element is either a facet of the adjacent element
or a part of the boundary. Let B1, . . . , BN denote all interior nodes and the nodes belonging
to ∂ΩN ∪ ∂ΩR, and let BN+1, . . . , BN̄ be the nodes lying on ∂ΩD. We also stand N∂ := N̄ −N .

Let φ1, . . . , φN̄ be the continuous piecewise linear nodal basis functions associated with
nodes B1, . . . , BN̄ , respectively. It is obvious that

φi ≥ 0, i = 1, . . . , N̄ , and
N̄∑

i=1

φi ≡ 1 in Ω. (9)

We denote the span of the basis functions by V h ⊂ H1(Ω), and define its subspace

V h
∂ΩD

= {v ∈ V h | v|∂ΩD
= 0} ⊂ H1

∂ΩD
(Ω).
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In what follows, we assume that the discretization of the initial and boundary conditions
are linear interpolants in V h, i.e.,

u0
h(x) =

N̄∑
i=1

u0(Bi)φi(x), (10)

and

gh(t, x) =

N∂∑
i=1

ghi (t)φN+i(x), where ghi (t) = g(t, BN+i), i = 1, . . . , N∂. (11)

From the consistency of the initial and the boundary conditions g(0, s) = u0(s), s ∈ ∂ΩD,
we have ghi (0) = u0(BN+i), i = 1, . . . , N∂.

We search for a semidiscrete solution of the form

uh(t, x) =
N∑

j=1

uh
j (t)φj(x) + gh(t, x) =

N∑
j=1

uh
j (t)φj(x) +

N̄∑
j=N+1

ghj−N(t)φj(x). (12)

Introducing the notation

vh(t) = [uh
1(t), . . . , u

h
N(t), gh1 (t), . . . , ghN∂

(t)]T , (13)

we get a Cauchy problem for the systems of ordinary differential equations

M
dvh

dt
+ Kvh = f + q + r, vh(0) = [u0(B1), . . . , u

0(BN), gh1 (0), . . . , ghN∂
(0)]T (14)

for the solution of the semidiscrete problem, where

M = (mij)
N, N̄
i=1, j=1, mij =

∫
Ω

φjφi dx,

K = (kij)
N, N̄
i=1, j=1, kij = b

∫
Ω

∇φj∇φi dx+ c

∫
Ω

φj φi dx+ σ

∫
∂ΩR

φj φi ds,

f = [f1, . . . , fN ]T , fi =

∫
Ω

fφi dx,

q = [q1, . . . , qN ]T , qi =

∫
∂ΩN

qφi ds,

and

r = [r1, . . . , rN ]T , ri =

∫
∂ΩR

rφi ds.
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In order to get a fully discrete numerical scheme, we choose a time-step Δt and denote
the approximations to vh(nΔt), f(nΔt), q(nΔt), and r(nΔt) by vn, fn, qn, and rn, n =
0, 1, . . . , nT (nT Δt = T ), respectively.

To discretize (14), we apply the θ-method (θ ∈ (0, 1] is a given parameter) and obtain a
system of linear algebraic equations

M
vn+1 − vn

Δt
+ θKvn+1 + (1− θ)Kvn = f (n,θ) + q(n,θ) + r(n,θ), (15)

where f (n,θ) := θ fn+1 + (1− θ)fn, q(n,θ) := θ qn+1 + (1− θ)qn, and r(n,θ) := θ rn+1 + (1− θ)rn.

Further, (15) can be rewritten as

(M + θΔtK)vn+1 = (M− (1− θ)ΔtK)vn + Δt f (n,θ) + Δt q(n,θ) + Δt r(n,θ), (16)

where n = 0, 1, . . . , nT − 1, and v0 = vh(0).
Let A := M + θΔtK and B := M− (1− θ)ΔtK . We shall use the following partitions of

the matrices and vectors:

A = [A0|A∂], B = [B0|B∂], vn = [(un)T |(gn)T ]T , (17)

where A0 and B0 are (N ×N) matrices, A∂,B∂ are of size (N ×N∂), un = [un
1 , . . . , u

n
N ]T ∈ RN

and gn = [gn1 , . . . , g
n
N∂

]T ∈ RN∂ . The iterative scheme (16) can now be rewritten as follows

Avn+1 = Bvn + Δt f (n,θ) + Δt q(n,θ) + Δt r(n,θ), (18)

or

[A0|A∂]

[
un+1

gn+1

]
= [B0|B∂]

[
un

gn

]
+ Δt f (n,θ) + Δt q(n,θ) + Δt r(n,θ). (19)

3 The discrete maximum principle

Let us define the following values for n = 0, . . . , nT :

gnmax = max{0, gn1 , . . . , gnN∂
}, (20)

vnmax = max{0, gnmax, u
n
1 , . . . , u

n
N}, (21)

f (n,n+1)
max =max{0, max

x∈Ω,τ∈(nΔt,(n+1)Δt)
f(τ, x)}, (22)

r(n,n+1)
max =max{0, max

x∈∂ΩR,τ∈(nΔt,(n+1)Δt)
r(τ, x)}, (23)
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for n = 0, . . . , nT − 1.

Then the discrete maximum principle (DMP) corresponding to (7) (under condition q < 0)
takes the following form (cf. [4, p. 100]):

un+1
i ≤ max{0, gn+1

max, v
n
max}+

1

θσ
r(n,n+1)
max + Δtf (n,n+1)

max , (24)

for i = 1, . . . , N ; n = 0, . . . , nT − 1.

We can give an algebraic condition for DMP as follows [2]:

Theorem 3.1 Galerkin approximation for the solution of problem (1)–(5), combined with the
θ-method for time discretization (where θ ∈ (0, 1]), satisfies the discrete maximum principle
(24) under condition q < 0 if

A−1
0 ≥ 0, (C1)

A−1
0 A∂ ≤ 0, (C2)

A−1
0 B ≥ 0. (C3)

Remark 3.2 Conditions (C1)–(C3) are ensured by the following simpler assumptions

A−1
0 ≥ 0, (C1�)

A∂ ≤ 0, (C2�)

B ≥ 0. (C3�)

Theorem 3.3 Galerkin approximation for the solution of problem (1)–(5), combined with the
θ-method for time discretization (where θ ∈ (0, 1]), satisfies the discrete maximum principle
(24) if

kij ≤ 0, i = 1, . . . , N, j = 1, . . . , N̄ , i �= j, (C1′)

mij + θΔt kij ≤ 0, i = 1, . . . , N, j = 1, . . . , N̄ , i �= j, (C2′)

mii − (1− θ)Δt kii ≥ 0, i = 1, . . . , N. (C3′)

For the proofs of the above two theorems see, e.g. [4].
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4 DMP on simplicial meshes

We shall generally denote any simplex from Th by the symbol K and also use denotation αK
ij

for the angle between (d−1)-dimensional facets FK
i and FK

j of K which is opposite to the edge
connecting vertices Bi and Bj, and let hK

i (hK
j ) be the height of K from Bi(Bj) onto FK

i (FK
j ).

The contributions to the mass matrix M over the simplex K are (cf. [1])

mij|K =

∫
K

φi φj dx = (1 + δij)
d!

(d+ 2)!
measdK, (25)

where δij is Kronecker’s symbol.
In order to compute the entries of the matrix K, we shall use the following formulae presented

e.g. in [1]:

∇φi · ∇φj|K = −
measd−1F

K
i ·measd−1F

K
j

(dmeasdK)2
cosαK

ij = −
cosαK

ij

hK
i h

K
j

(i �= j), (26)

∇φi · ∇φi|K =
(measd−1F

K
i )2

(dmeasdK)2
=

1

(hK
i )2
. (27)

Then the conditions (C1′)–(C3′) in the Theorem 3.3 can be guaranteed by the following
three lemmas.

Lemma 4.1 Let the simplicial partition Th of Ω be such that for any pair of distinct (d− 1)-
dimensional facets FK

i and FK
j of any simplex K from Th, we have

cosαK
ij

hK
i h

K
j

≥ c

b (d+ 1)(d+ 2)
+

σ

b d(d+ 1)

measd−1 (∂K ∩ ∂ΩR)

measdK
, (28)

where ∂K is the boundary of K. Then

kij ≤ 0, for i = 1, . . . , N, j = 1, . . . , N̄ , i �= j.

Lemma 4.2 Let the simplicial partition Th of Ω and the time-step Δt be such that for any
pair of distinct (d− 1)-dimensional facets FK

i and FK
j of any simplex K from Th, we have

cosαK
ij

hK
i h

K
j

≥ c+ 1/(θΔt)

b (d+ 1)(d+ 2)
+

σ

b d(d+ 1)

measd−1 (∂K ∩ ∂ΩR)

measdK
. (29)

where ∂K is the boundary of K. Then

mij + θΔt kij ≤ 0, for i = 1, . . . , N, j = 1, . . . , N̄ , i �= j.
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Lemma 4.3 Let the simplicial partition Th of Ω and the time-step Δt be such that for any
simplex K from Th, we have

0 ≤ − 1

(hK
i )2

+
2
(

1
(1−θ)Δt

− c
)

b(d+ 1)(d+ 2)
− 2σ

bd(d+ 1)

measd−1 (∂K ∩ ∂ΩR)

measdK
, (30)

where ∂K is the boundary of K. Then

mii − (1− θ)Δt kii ≥ 0, i = 1, . . . , N.

Summarizing the above results we can formulate the main result of the paper.

Theorem 4.4 Galerkin approximation for the solution of problem (1)–(5), combined with the
θ-method for time discretization (where θ ∈ (0, 1]), satisfies the discrete maximum principle
(24) if an acute simplicial mesh is used and the time-step satisfies the following (lower and
upper) estimates:

1

Δt
≤ θ

(cosαK
ij b(d+ 1)(d+ 2)

hK
i h

K
j

− σ(d+ 2)measd−1 (∂K ∩ ∂ΩR)

dmeasdK
− c

)
, (31)

and

Δt ≤ 1

(1− θ)
(

b(d+1)(d+2)

2(hK
i )2

+ σ(d+2)measd−1 (∂K∩∂ΩR)

d measd K
+ c

) . (32)
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Róbert Horváth was supported by the Grant no. K67819 and K61800 of OTKA, and János
Bolyai scholarship.

Sergey Korotov was supported by grant no. 127031 from the Academy of Finland.

References
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Department of Applied Analysis, Eötvös Loránd University
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CHAOTIC OSCILLATIONS OF ELASTIC BEAMS

FEČKAN Michal, (SK)

Abstract. We survey our recent results on the existence of chaotic oscillations of weakly
damped and periodically forced elastic beams. The bifurcation theory of chaotic oscilla-
tions is developed with several applications to concrete beam partial differential equations.
Key words and phrases. Differential equations, Homoclinic solutions, Bifurcations,
Chaos, Elastic Beams.
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1 Introduction

A model for oscillations of an elastic beam with a compressive axial load P0 (see Figure 1) is
given by the partial differential equation (PDE)

ü = −u′′′′ − P0u
′′ +

[∫ π

0

u′(s, t)2 ds

]
u′′ − 2μ2u̇+ μ1 cosω0t (1)

where P0, μ1, μ2, ω0 are constants and u is a real valued function of two variables t ∈ R,
x ∈ [0, π], subject to the boundary conditions

u(0, t) = u(π, t) = u′′(0, t) = u′′(π, t) = 0 .

In (1), a superior dot denotes differentiation with respect to t and prime differentiation with
respect to x. When P0 is sufficiently large, (1) can exhibit chaotic behavior.

In (1) substitute u(x, t) =
∞∑

k=1

uk(t) sin kx, multiply by sinnx and integrate from 0 to π.

This yields the infinite set of ordinary differential equations (ODEs)

ün = n2(P0 − n2)un −
π

2
n2

[ ∞∑
k=1

k2u2
k

]
un − 2μ2u̇n + 2μ1

[
1− (−1)n

πn

]
cosω0t,

n = 1, 2, . . . .
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Figure 1: The forced buckled beam (1).

We see that the linear parts of these equations are uncoupled and the equations divide into two
types. The system of equations defined by 1 ≤ n2 < P0 has a hyperbolic equilibrium at the
origin whereas, for the system of equations satisfying n2 ≥ P0, this equilibrium is a center. For
simplicity let us assume 1 < P0 < 4. Then only the equation with n = 1 is hyperbolic while
the system of remaining equations has a center. To emphasize this let us put x = (u1, u̇1) and

y = (u2, u̇2/ω1, u3, u̇3/ω2, . . .) ,

where we have defined a2 = P0 − 1 and ω2
n = (n+ 1)2 [(n+ 1)2 − P0]. The preceding equations

now take the form

ẋ1 = x2 ,

ẋ2 = a2x1 − π
2

[
x2

1 +
∞∑

k=1

(k + 1)2y22k−1

]
x1

−2μ2x2 + 4
π
μ1 cosω0t ,

ẏ2n−1 = ωny2n ,

ẏ2n = −ωny2n−1 − π
2

(n+1)2

ωn

[
x2

1 +
∞∑

k=1

(k + 1)2y22k−1

]
y2n−1

−2μ2y2n + 2μ1

[
1−(−1)n+1

π(n+1)ωn

]
cosω0t .

(2)

In (2) we project onto the hyperbolic subspace by setting y = 0 to obtain what we shall call
the reduced equation. In our example this is

ẍ1 = a2x1 −
π

2
x3

1 − 2μ2ẋ1 +
4

π
μ1 cosω0t. (3)
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We see that this is the forced, damped Duffing equation with negative stiffness for which
standard theory yields chaotic dynamics. The purpose of the present work is to survey results
of [7] where it is shown that the chaotic dynamics of (3) is, in some sense, shadowed in the
dynamics of the full equation (2).

It is interesting to look at some history of this problem. The first work was by Holmes [9]
in which he started with the PDE and carried out the Galerkin expansion but restricted his
analysis to the reduced equation (3). The significance of that work is that it introduced the
idea of Melnikov analysis. In subsequent work [10] Holmes and Marsden extended the results
to infinite dimension but abandoned the Galerkin approach in favor of nonlinear semigroup
techniques directly in infinite dimensions. In our work we go back to the original, simpler
analysis of the reduced equation and then show that the results apply to the original PDE.
Some advantages to this are that the Galerkin projection is a technique familiar to many
engineers and physicists and, also, we are able to utilize our general Melnikov results. This is
illustrated further in the generalizations which follow.

Next, we show the chaos in [1] for elastic beams of the form

ü+ u′′′′ + εδu̇+ εμh(x,
√
εt) = 0 ,

u′′(0, ·) = u′′(π/4, ·) = 0 ,
u′′′(0, ·) = −εf(u(0, ·)), u′′′(π/4, ·) = εf(u(π/4, ·)) ,

(4)

where ε > 0 and μ are sufficiently small parameters, δ > 0 is a constant, f ∈ C2(R), h ∈
C2([0, π/4] × R) and h(x, t) is 1-periodic in t, provided an associated reduced equation has a
homoclinic orbit. Equation (4) describes vibrations of a beam resting on two identical bearings
with purely elastic responses which are determined by f . The length of the beam is π/4. Since
ε > 0, (4) is a semilinear problem.

On the other hand, we study the existence of chaos in [2] for the following PDE

ü+ u′′′′ + (i2 + εσ2)u′′ − εκu′′f
(∫ π

0

u′(s, t)2 ds

)
= ε(νh(x,

√
εt)− δu̇) ,

u(0, t) = u(π, t) = 0 = u′′(0, t) = u′′(π, t) ,

where κ > 0, δ > 0 and σ ∈ (0, 1] are constants, ε > 0 and ν are small parameters, i ∈ N is
fixed, h(x, t) is periodic in time. Here the external load i2+εσ2 is resonant and the contribution
given from the stress due to the external rigidity εκ, does not drive the system too far away
from the resonance.

Finally, some more recent work on the chaos in PDEs is by Berti and Carminati [4]. An
undamped buckled beam is investigated by Yagasaki [15] to show Arnold diffusion type motions.
Perturbed nonlinear Schrödinger equations are studied by Li [11, 12] under generic conditions.

2 The Abstract Problem

Using the example in the preceding section as a model we now develop an abstract theory. Let
Y and H be separable real Hilbert spaces with Y ⊂ H.
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We now consider differential equations of the form

ẋ = f(x, y, μ, t) = f0(x, y) + μ1f1(x, y, μ, t) + μ2f2(x, y, μ, t) ,
ẏ = g(x, y, μ, t) = Ay + g0(x, y) + μ1ν cosω0t+ μ2g2(x, y, μ) ,

(5)

with x ∈ Rn, y ∈ Y, μ = (μ1, μ2) ∈ R2, ν ∈ Y. We make the following assumptions about (5):

(H1) A : Y → H is a continuous and linear transformation.

(H2) The functions fi and gi are in the spaces:

f0 ∈ C4(Rn × Y,Rn); f1, f2 ∈ C4(Rn × Y× R2 × R,Rn);
g0 ∈ C4(Rn × Y,Y); g2 ∈ C4(Rn × Y× R2,Y) .

(H3) f1 and f2 are periodic in t with period T = 2π/ω0.

(H4) f0(0, 0) = 0 and D2f0(x, 0) = 0.

(H5) The eigenvalues of D1f0(0, 0) lie off the imaginary axis.

(H6) The equation ẋ = f0(x, 0) has a nontrivial solution homoclinic to x = 0.

(H7) g0(x, 0) = g2(x, 0, μ) = 0, D12g0(0, 0) = 0 and D22g0(x, 0) = 0.

(H8) There are constants K > 0, δ > 0 and b > 0 so that when 0 ≤ |μ2| ≤ δ the variational
equation

v̇ =
(
A+ μ2D2g2(0, 0, 0)

)
v

has a group {Vμ2(t)} of bounded evolution operators from Y to Y satisfying |Vμ2(t)Vμ2(s)
−1| ≤

K ebμ2(s−t).

(H9) There is a constant K > 0 such that the nonhomogeneous variational equation

v̇ = [A+ μ2D2g2(0, 0, 0)] v + μ1ν cosω0t

has a particular solution ψ : R → Y satisfying |ψ(t)| ≤ K|μ1||ν|.

By a weak solution to (5) we mean a pair of continuous functions x0 : R → Rn, y0 : R → Y

such that x0 is differentiable and y0 has a derivative ẏ0 : R → H and which satisfy (5) pointwise
in H.

By (H8) we mean that Vμ2(s)
−1 = Vμ2(−s), Vμ2(s) ◦ Vμ2(t) = Vμ2(s + t), Vμ2(0) = I and

that for y0 ∈ Y, y(t) = Vμ2(t)y0 is the weak solution to v̇ = [A+ μ2D2g2(0, 0, 0)] v satisfying
y(0) = y0.
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3 Chaotic Oscillations of the Abstract Problem

The reduced system of equations for (5) is

ẋ = f(x, 0, μ, t) = f0(x, 0) + μ1f1(x, 0, μ, t) + μ2f2(x, 0, μ, t) (6)

with x ∈ Rn. In [3, 5, 6, 8, 13] a general Melnikov theory is developed for first order systems
in Rn. We summarize those results here as applied to (6).

By (H6), (6) has a nontrivial homoclinic solution γ when μ = 0. By the variational equation
along γ we mean the linear equation

u̇ = D1f0(γ, 0)u (7)

and by the adjoint the system
v̇ = −D1f0(γ, 0)∗v . (8)

We let {u1, . . . , ud} denote a basis for the vector space of bounded solutions to (7) with ud = γ̇
and we let {v1, . . . , vd} denote a basis for the vector space of bounded solutions to (8). Now
define the functions aij : R → R, constants bijk and function

M : R2 × R× Rd−1 → Rd

by
aij(α) =

∫∞
−∞ 〈vi(t), fj(γ(t), 0, 0, t+ α)〉 dt ;

i = 1, . . . , d; j = 1, 2 ;

bijk =
∫∞
−∞ 〈vi, D11f0(γ, 0)ujuk〉 dt ;

i = 1, . . . , d; j, k = 1, . . . , d− 1 ;

Mi(μ, α, β) =
2∑

j=1

aij(α)μj + 1
2

d−1∑
j,k=1

bijkβjβk ; 1 ≤ i ≤ d .

(9)

The function M is our bifurcation function.
Now, suppose that (6) has a (d−1)-parameter family of homoclinic orbits given by t→ γβ(t)

with β ∈ U0 where U0 is an open neighborhood of the origin in Rd−1. Then in (9) all bijk = 0
and an alternate bifurcation function is required.

For each fixed β we let {vβ1, . . . , vβd} denote a basis for the vector space of bounded solutions
to the adjoint equation v̇ = −D1f0(γβ, 0)∗v.Without loss of generality we can assume that each
vβi depends differentially on β. Now define functions aij : R×U0 → R andM : R2×R×U0 → Rd

by
aij(α, β) =

∫∞
−∞ 〈vβi(t), fj(γβ(t), 0, 0, t+ α)〉 dt ;

i = 1, . . . , d; j = 1, 2 ;

Mi(μ, α, β) =
2∑

j=1

aij(α, β)μj; 1 ≤ i ≤ d .

(10)

This function, M , is the bifurcation function for this situation. Now we can state the main
theorem (cf. [7]).
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Theorem 3.1 Suppose (H1)-(H10) hold. Let M be as in (9) or (10) and suppose (μ0, α0, β0)
are such that M(μ0, α0, β0) = 0 and D(α,β)M(μ0, α0, β0) is nonsingular. Then ∃ξ̄0 > 0 such that
for any μ = ξμ0, 0 < ξ ≤ ξ0, (5) possesses a countable infinity of subharmonic solutions of all
possible periods, an uncountable infinity of chaotic solutions and it has a sensitive dependence
on initial conditions.

In order to apply the above results, we use for a concrete PDE the following procedure:

1. Use a Galerkin expansion to convert the PDE to an infinite set of ODEs as (5).

2. Truncate the equation to get the finite problem (6) and derive the Melnikov functions

either (9) or (10). For this we must verify (H1) through (H6).

3. Use Theorem 3.1 to show chaos for the original PDE. This requires (H7)-(H9).

Remark 3.2 We know from [7] that in Theorem 3.1, (5) has a Smale horseshoe with the
corresponding deterministic chaos (cf. [13, 14]).

4 Applications to Elastic Beams

We apply the above procedure to a number of different cases and generalizations of the example
in Section 1.

4.1 Planer Motion with One Buckled Mode

The boundary value problem for planer deflections of an elastic beam with a compressive axial
load P0 and pinned ends is given by (1). The Melnikov function (9) with d = 1 (cf. [7]) becomes

M(α) =
[

8ω0√
π

sinω0α sech πω0

2a

]
μ1 −

(
16a3

3π

)
μ2.

Thus, we obtain the following result using Theorem 3.1.

Theorem 4.1 Suppose 1 < P0 < 4. If ω0 �= ωn ∀n ∈ N then for any μ1 and μ2 �= 0 small
satisfying

|μ2| <
3
√
πω0

2a3
sech πω0

2a
· |μ1| , (11)

PDE (1) has a homoclinic solution with the associated chaos.

In the μ1-μ2 plane we get from the condition (11) four small open wedge-shaped regions of
parameter values for which (1) exhibits chaos (see Figure 2). These regions are bounded by the

lines μ1/μ2 = ±3
√

πω0

2a3 sech πω0

2a
and μ2 = 0.
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Figure 2: The chaotic open wedge-shaped region of (1) in R2.

4.2 Nonplaner Motion of a Symmetric Beam with One Buckled Mode

Let us consider a beam with symmetric cross section, pinned ends and compressive axial load
P0 and assume now that the beam is not constrained to defect in a plane. If u(x, t) and w(x, t)
denote the transverse defections at position x and time t we obtain the following boundary
value problem.

ü = −u′′′′ − P0u
′′ +

[∫ π

0

(
u′(s, t)2 + w′(s, t)2

)
ds

]
u′′

− 2μ2u̇ cos η + μ1 cos ζ cosω0t ,

ẅ = −w′′′′ − P0w
′′ +

[∫ π

0

(
u′(s, t)2 + w′(s, t)2

)
ds

]
w′′

− 2μ2ẇ sin η + μ1 sin ζ cosω0t ,

u(0, t) = u(π, t) = u′′(0, t) = u′′(π, t) = w(0, t)

= w(π, t) = w′′(0, t) = w′′(π, t) = 0

(12)

where η, ζ are constants. The parameters μ1, μ2 represent the coefficients of, respectively,
total transverse forcing and total viscous damping. These effects are distributed between the
two directions of motion. The quantity tan ζ represents the ratio of forcing in the u-direction
to forcing in the w-direction while tan η plays the same role for the damping. We suppose
η, ζ ∈ (0, π/2) in order to avoid certain degeneracies and 1 < P0 < 4.
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Figure 3: The chaotic wedge-shaped regions of (12) in R2.

Now the Melnikov function (10) has the form

M1(μ, α, β) =

[
8√
π

sin (β − ζ) cosω0α sech πω0

2a

]
μ1 ,

M2(μ, α, β) =

[
8ω0√
π

cos (β − ζ) sinω0α sech πω0

2a

]
μ1

−
[
16a3(cos η cos2 β + sin η sin2 β)

3π

]
μ2 .

The following result is obtained from Theorem 3.1 (cf. [7]).

Theorem 4.2 Suppose ω0 �= ωn for all n and let

m1 =
3
√
πω0

2a2(cos η cos2 ζ + sin η sin2 ζ)
sech

πω0

2a
,

m2 = max
β∈R

{
3ω0

√
π

2a3
cos (β − ζ)

cos η cos2 β + sin η sin2 β
sech

πω0

2a

}
.

i) If m0 �= 0 satisfies one but not both of |m0| < mi then if μ2 = m0μ1 for μ1 �= 0 and μ2

small then there exist two homoclinic orbits of (12) with the associated chaos.

ii) If m0 �= 0 satisfies each of |m0| < mi then there are four homoclinic orbits of (12) with
the associated chaos.

Summarizing, we obtain eight open small wedge-shaped regions of parameter values in the μ1-
μ2 plane bounded by the lines μ2/μ1 = ±m1, μ2/μ1 = ±m2 and μ2 = 0 with m1 ≤ m2 for
which the partial differential equation exhibits chaos (see Figure 3). In the regions labeled I
there are two homoclinics while in regions II there exist four. It is interesting to note that
in this case, by adjusting the parameters η and ζ, it is possible to make the size of the wedge
arbitrarily close to filling the μ1-μ2 plane.
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4.3 Nonplaner, Nonsymmetric Beam with One Buckled Mode in Each Plane

For the case of a nonsymmetric beam with nonplaner motion we have the boundary value
problem

ü = −u′′′′ − P0u
′′ +

[∫ π

0

(
u′(s, t)2 + w′(s, t)2

)
ds

]
u′′

−2μ2u̇ cos η + μ1 cos ζ cosω0t ,

ẅ = −R2w′′′′ − P0w
′′ +

[∫ π

0

(
u′(s, t)2 + w′(s, t)2

)
ds

]
w′′

−2μ2ẇ sin η + μ1 sin ζ cosω0t ,

u(0, t) = u(π, t) = u′′(0, t) = u′′(π, t)

= w(0, t) = w(π, t) = w′′(0, t) = w′′(π, t) = 0 ,

(13)

where R2 is constant representing the stiffness ratio for the two directions. We assume R > 1
which amounts to choosing w as the direction with stiffer cross-section. Note that R = 1
reduces to Section 4.2. As before we assume η, ζ ∈ (0, π/2) and R2 < P0 < 4. So 1 < R < 2.
Then we define

a21 = P0 − 1, ω2
n−1,1 = n2[(n2 − P0], n = 2, 3, . . . ;

a22 = P0 −R2, ω2
n−1,2 = n2[n2R2 − P0], n = 2, 3, . . . .

Now, the Melnikov function (9) is

M(α) =

[
8ω0 cos ζ√
π

sinω0α sech πω0

2a1

]
μ1 −

(
16a31 cos η

3π

)
μ2 .

The following result is obtained from Theorem 3.1 (cf. [7]).

Theorem 4.3 If ω0 �= ωn,i for all n and for i = 1, 2, then whenever μ1 and μ2 �= 0 are small
satisfying one of the following conditions

|μ2| <
3
√
π ω0 cos ζ

2a31 cos η
sech πω0

2a1
· |μ1|, |μ2| <

3
√
π ω0 sin ζ

2a32 sin η
sech πω0

2a2
· |μ1| ,

PDE (13) has a homoclinic solution with the associated chaos.

In the μ1-μ2 plane in this case we get a diagram as in Figure 3. For parameter values in the
regions labeled I there is one homoclinic orbit while for those in II there are two.

4.4 Multiple Buckled Modes

It remains to consider the situation where the axial load, P0, is increased sufficiently to produce
multiple buckled modes. So we suppose there exists an integer N ∈ N such that N2 < P0 <
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(N + 1)2. We then define

a2n = n2(P0 − n2), for n = 1, 2, . . . , N ;

ω2
n−N = n2(n2 − P0), for n = N + 1, N + 2, . . .

The following result is obtained from Theorem 3.1 (cf. [7]).

Theorem 4.4 Let N ∈ N, N2 < P0 < (N + 1)2 and suppose one of the following hold:

(i) N is odd and set m = N .

(ii) N is even, N ≥ 4, set m = N − 1 and

P0 �=
4N2 − (N − 1)2

[√
9N2 − 2N + 1− 3(N − 1)

]2
4N2 −

[√
9N2 − 2N + 1− 3(N − 1)

]2 .

(iii) N = 2, set m = 1 and

P0 �=
37 + 5

√
33

16
, P0 �=

55 + 9
√

33

16
.

Suppose in addition that ωn �= ω0 for all n. Then whenever μ1 and μ2 �= 0 are small satisfying

|μ2| <
3m
√
π ω0

2a3m
sech πω0

2am
· |μ1| ,

PDE (1) has a homoclinic solution with the associated chaos.

We look at the case of a beam constrained to planer motion. The calculations for the
non-planer case are similar.
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SINGULAR INITIAL PROBLEM FOR FREDHOLM-VOLTERRA
INTEGRODIFFERENTIAL EQUATIONS
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Abstract. In the paper existence and uniqueness of solutions of singular Fredholm-
Volterra integrodifferential equations are studied and , moreover, conditions of continuous
dependence of solutions on a parameter are determined. Solutions of given integrodiffer-
ential equations are located in cone-shaped area, which gives a bound for solutions of the
investigated singular problem.
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1 Introduction

In the past few years, many papers are devoted to the study of singular problems for differential
and integrodifferential equations (see[1-9]). The fundamental methods of investigation of all
above mentioned works are based on applications of fixed point theorems especially Schauder’s
theorem in [6], Schauder-Tychonoff’s theorem in [1], Banach fixed point theorem in [5,7].
In this paper we extend results of the paper [7] to Fredholm-Volterra integrodifferential equa-
tions

y′(t) = F
(
t, y(t),

∫ t

0+

K1(t, s, y(t), y(s))ds,

∫ 1

0+

K2(t, s, y(t), y(s)ds, μ

)
,

y(0+, μ) = 0, (1)

and, moreover, we shall also investigate a problem of continuous dependence of solutions on a
parameter.
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Suppose

(I) F : Ω → Rn, F ∈ C0(Ω),
Ω = {(t, u1, u2, u3, μ) ∈ J × (Rn)3×R : |u1| ≤ φ(t), |u2| ≤ ψ(t), |u3| ≤ ψ(t)}, J = (0, 1],
0 < φ(t) ∈ C0(J), φ(0+) = 0, 0 < ψ(t) ∈ C0(J), | · | denotes the usual norm in Rn,
|F(t, u1, u2, u3, μ)−F(t, u1, u2, u3, μ)| ≤

∑3
i=1Mi|ui − ui| for all

(t, u1, u2, u3, μ), (t, u1, u2u3, μ) ∈ Ω, Mi ≥ 0, i = 1, 2, 3.

(II) Kj : Ω1 → Rn, Kj ∈ C0(Ω1), Ω1 = {(t, s, w, v) ∈ J×J×Rn×Rn : |w| ≤ φ(t) , |v| ≤ φ(t) },
|K1(t, s, w, v)−K1(t, s, w, v)| ≤ [N1|w − w |+N2|v − v |],
|K2(t, s, w, v)−K2(t, s, w, v)| ≤ [N3e

λ(s−t)|w − w|+N4e
λ(t−s)|v − v|]

for all (t, s, w, v), (t, s, w, v) ∈ Ω1, Nj ≥ 0, j = 1, 2. λ > 0 is a sufficiently large constant
such that (

M1 +M2N1 +M3N3 +M3N4

λ
+
M2N2

λ2

)
< 1.

2 Main results

Theorem 2.1 Let the functions F(t, u1, u2, u3, μ), Kj(t, s, w, v), j = 1, 2 satisfy conditions
(I), (II) and, moreover

|F| ≤
3∑

i=1

gi(t)|ui|, 0 < gi(t) ∈ C0(J),

∫ t

0+

g1(s)φ(s)ds ≤ αφ(t),

∫ t

0+

(g2(s) + g3(s))ψ(s)ds ≤ βφ(t), α+ β ≤ 1,

then the problem (1) has a unique solution y(t, μ) for each μ ∈ R, t ∈ J .

Proof. Denote H the Banach space of continuous vector-valued functions

h : J0 → Rn, J0 = [0, 1], |h(t)| ≤ φ(t)

on J with the norm
||h||λ = max

t∈J0

{e−λt|h(t)|},

where λ > 0 is an arbitrary parameter. The initial value problem (1) is equivalent to the system
of integral equations

y(t) =

∫ t

0+

F
(
s, y(s),

∫ s

0+

K1(s, w, y(s), y(w))dw,

∫ 1

0+

K2(s, w, y(s), y(w))dw, μ

)
ds (2)
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Define the operator T by right-hand side of (2)

T (h) =

∫ t

0+

F
(
s, h(s),

∫ s

0+

K1(s, w, h(s), h(w))dw,

∫ 1

0+

K2(s, w, h(s), h(w))dw, μ

)
ds,

where h ∈ H. Let μ ∈ R be fixed. The transformation T maps H continuously into itself
because

|T (h)| ≤
∫ t

0+

∣∣∣∣F
(
s, h(s),

∫ s

0+

K1(s, w, h(s), h(w))dw, ),

∫ 1

0+

K2(s, w, h(s), h(w))dw, μ

)∣∣∣∣ ds ≤
≤
∫ t

0+

[
g1(s)|h(s)|+ g2(s)|

∫ s

0+

K1(s, w, h(s), h(w))dw|+ g3(s))|
∫ 1

0+

K2(s, w, h(s), h(w))dw|
]
ds ≤

≤
∫ t

0+

(g1(s)φ(s) + g2(s)ψ(s) + g3(s)ψ(s)) ds ≤ (α+ β)φ(t) ≤ φ(t)

for every h ∈ H.
Using (I), (II) and the definition ||.||λ we have

|T (h2)− T (h1)| ≤

≤
∫ t

0+

∣∣∣∣F
(
s, h2(s),

∫ s

0+

K1(s, w, h2(s), h2(w))dw,

∫ 1

0+

K2(s, w, h2(s), h2(w))dw, μ

)
−

− F
(
s, h1(s),

∫ s

0+

K1(s, w, h1(s), h1(w))dw,

∫ 1

0+

K2(s, w, h1(s), h1(w))dw, μ

)∣∣∣∣ ≤
≤
∫ t

0+

(
M1|h2(s)− h1(s)|+M2

∫ s

0+

|K1(s, w, h2(s), h2(w))−K1(s, w, h1(s), h1(w))|dw+

+M3

∫ 1

0+

|K2(s, w, h2(s), h2(w))−K2(s, w, h1(s), h1(w))|dw
)
ds ≤

≤
∫ t

0+

(
M1|h2(s)− h1(s)|+M2

∫ s

0+

[N1|h2(s)− h1(s)|+N2|h2(w)− h1(w)|] dw+

+M3

∫ 1

0+

[
N3e

λ(s−w)|h2(s)− h1(s)|+N4e
λ(s−w)|h2(w)− h1(w)|

]
dw

)
ds ≤

≤ ||h2 − h1||λ
(
M1

∫ t

0+

eλsds+M2N1

∫ t

0+

∫ s

0+

eλsdwds+

+M2N2

∫ t

0+

∫ s

0+

eλwdwds+M3N3

∫ t

0+

∫ 1

0+

eλ(s−w)eλwdwds+M3N4

∫ t

0+

∫ 1

0+

eλ(s−w)eλwdwds

)
=

= ||h2 − h1||λ
(
M1(
eλt − 1

λ
) +M2N1(

teλt

λ
− e

λt − 1

λ2
) +M2N2(

eλt − 1

λ2
− t
λ

)+
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+M3N3(
eλt − 1

λ
) +M3N4(

eλt − 1

λ
)

)
≤

≤ ||h2 − h1||λeλt

(
M1 +M2N1 +M3N3 +M3N4

λ
+
M2N2

λ2

)
.

Thus
||T (h2)− T (h1)||λ = max

t∈J0

{e−λt|T (h2)− T (h1)|} ≤ q||h2 − h1||λ,

where

q :=
M1 +M2N1 +M3N3 +M3N4

λ
+
M2N2

λ2
.

By Banach theorem the operator T has a unique stationary point h∗ in the space H , i.e.
h∗(t) ≡ T (h∗(t)), t ∈ J0. Then y := h∗ is the desidered solution of (1).

Theorem 2.2 Let the assumptions of Theorem 2.1 be satisfied and let there exist a constant
L > 0 and the integrable function γ : J0 → J0, such that

|F(t, u1, u2, u3, μ2)−F(t, u1, u2, u3, μ1)| ≤ γ(t)|μ2 − μ1|,

where (t, u1, u2, u3, μ1), (t, u1, u2, u3, μ2) ∈ Ω and

max
t∈J0

{
e−λt

∫ t

0+

γ(s)ds

}
≤ L,

then the solution y(t, μ) of (1) is continuous with respect to the variables (t, μ) ∈ J ×R.

Proof. Define as above, for h ∈ H the transformation Tμ(h) by means of the right-hand side
(2) then we obtain

||Tμ(h)− Tμ(y)||λ ≤
(
M1 +M2N1 +M3N3 +M3N4

λ
+
M2N2

λ2

)
||h− y||λ.

By the hypothesis of Theorem 2.2 we get

e−λt|Tμ2(h)− Tμ1(h)| ≤

e−λt

∫ t

0+

∣∣∣∣F
(
s, h(s),

∫ s

0+

K1(s, w, h(s), h(w))dw, ),

∫ 1

0+

K2(s, w, h(s), h(w))dw, μ2

)
−

− F
(
s, h(s),

∫ s

0+

K1(s, w, h(s), h(w))dw,

∫ 1

0+

K2(s, w, h(s), h(w))dw, μ1

)∣∣∣∣ ds ≤
≤ e−λt

∫ t

0+

γ(s)|μ2 − μ1|ds ≤ L|μ2 − μ1|.
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Hence
||Tμ2(h)− Tμ1(h)||λ ≤ L|μ2 − μ1|.

From this and by Theorem 2.1 we obtain

||h(t, μ2)− h(t, μ1)||λ = ||Tμ2 [h(t, μ2)]− Tμ2 [h(t, μ1)] + Tμ2 [h(t, μ1)]− Tμ1 [h(t, μ1)]||λ ≤

||Tμ2 [h(t, μ2)]− Tμ2 [h(t, μ1)]||λ + ||Tμ2 [h(t, μ1)]− Tμ1 [h(t, μ1)]||λ ≤

≤
(
M1 +M2N1 +M3N3 +M3N4

λ
+
M2N2

λ2

)
||h(t, μ2)− h(t, μ1)||λ + L|μ2 − μ1|.

Thus

||h(t, μ2)− h(t, μ1)||λ ≤
[
1−

(
M1 +M2N1 +M3N3 +M3N4

λ
+
M2N2

λ2

)]−1

L|μ2 − μ1|.

Consequently the function h(t, μ) is uniformly continuous with respect to the variable μ ∈ R ;
so y(t, μ) is also continuous with respect to two variables (t, μ) ∈ J×R. The proof is complete.

Example. Consider the following initial problem

y′(t) =
t

3
y(t)+2t2

∫ t

0+

√
se−

1
ts (y(t) + 2y(s)) ds+

∫ 1

0+

e10(s−t)arctg
μ2

s

(
y(t)

2
+ y(s)

)
ds+

√
t3 + 1

(3)
y(0+, μ) = 0.

Now we can put

M1 = 1/3, M2 = 2, M3 = 1, N1 = 1/e, N2 = 2/e, N3 = π/4, N4 = π/2, λ = 10,

then

q =
M1 +M2N1 +M3N3 +M3N4

λ
+
M2N2

λ2
=

1/3 + 2/e+ π/4 + π/2

10
+

4/e

100
< 1.

Now
|F | ≤ t/3|u1|+ 2t2|u2|+ |u3| ⇒ g1(t) = t/3, g2(t) = 2t2, g3(t) = 1.

Putting φ(t) = t5/2, ψ(t) = t5 we obtain∫ t

0

g1(s)φ(s)ds =

∫ t

0

s6

6
ds =

t7

42
≤ 1

21
φ(t) ⇒ α =

1

21
.

∫ t

0

(g2(s) + g3(s))ψ(s)ds =

∫ 1

0

(2s2 + 1)s5ds ≤ 5

12
t5 ≤ 10

12
φ(t) ⇒ β = 10/12.

Finally, we have
(α+ β) = 1/21 + 10/12 < 1.
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Now from Theorem 2.1 there exists a unique solution of initial problem(3) such that
|y(t, μ)| ≤ t2

2
.
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Abstract. Oscillatory properties of a hyperbolic reaction-diffusion-convection equation
with time-dependent coefficients are studied.
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equation with relaxation, modified Fourier law, modified Darcy law.
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1 Hyperbolic diffusion equation

Let Ω ⊂ Rn be a bounded domain with sufficiently regular boundary ∂Ω, τ0 a positive constant,

t �→ α(t), α : R+ → R a continuously differentiable function, t �→ β(t), β : R+ → R a continuous

function, inft∈R+ β(t) > 0 and α, α̇ and β bounded functions.

Further, let A(x) =
(
ajk(x)

)n

j,k=1
be a matrix of functions from C1(Ω̄), which is symmetric

(ajk(x) = akj(x), x ∈ Ω̄) and positive definite uniformly with respect to x ∈ Ω̄, i. e. there exists

a0 > 0 such that

n∑
j,k=1

ajk(x) ξj ξk ≥ a0
n∑

j=1

ξ2j , (ξj)
n
j=1 ∈ Rn, x ∈ Ω̄. (1)

Let B(x) =
(
bj(x)

)n

j=1
be a vector of functions from C1(Ω̄) and c ∈ C(Ω̄). (Operators div and

grad act solely on x variables.)
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We deal with the following evolution differential equation

τ0
∂2u

∂t2
+ α(t)

∂u

∂t
+ β(t)Lu = 0, (t, x) ∈ R+ × Ω, (2)

where

Lu = − div
(
A(x) gradu

)
+B(x) gradu+ c(x)u. (3)

Equations of this type arise, for example, in the theory of the heat conduction, diffusion theory

or in the theory of the fluid flow in porous medium. If the fundamental balance law (mass,

energy conservation law)
∂η

∂t
+ div w = 0 (4)

is combined with the classical constitutive laws (Fourier, Fick, and Darcy, respectively) of the

form

w = −K grad η + βυ, (5)

a classical parabolic reaction-diffusion-convection equation arises. If the constitutive law is

modified by adding a time derivative flux term we get

τ
∂w

∂t
+ w = −K grad η + βυ, (6)

and after introducing into (4) we obtain a hyperbolic equation of type (2). (For the fluid flow in

porous medium see [19].) Here η is the density of the substance, w is the flux-density vector, υ

is the flow field for the medium in which the substance is moving, K is a coefficient, in general

a tensor, and τ is the so-called relaxation time.

This modification of the classical (time-independent) constitutive relation (Fourier law) in the

theory of heat conduction is due to Cattaneo [4]. Since then many papers have appeared

concerning the Cattaneo-type heat models, “non-Fickian” diffusion, Darcy law with relaxation,

etc.: see e. g. [1], [3], [8], [9], [17], [19]. In the study of the general motion of the fluid flow

through movable matrix instead of adopting the Cattaneo approach Mls in [16] made use of

the D’Alembert principle for both phases. He obtained a system of quasi-linear first-order

hyperbolic equations. These equations govern the general Darcian mechanics of two-phase

systems.

2 Oscillatory properties

In this contribution we are interested in oscillatory solutions of Eq. (2) as such solutions are

frequently important in practical problems, for example when studying the tidal effects in

groundwater, see e. g. [3], [18]. We shall study properties of a function (t, x) �→ u(t, x),
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u : R+ × Ω → R that solves Eq. (2) supplemented with the homogeneous Dirichlet condition

u = 0 for (t, x) ∈ R+ × ∂Ω. By a solution we mean any weak solution satisfying

d2

dt2
(u(t), w) + α(t)

d

dt
(u(t), w) + β(t) (u(t), L+w) = 0 (7)

for any w ∈ W 2
2 (Ω)

◦
W 1

2 (Ω) in the sense of distributions on R+. Here (·, ·) is the scalar product

in L2(Ω) and

L+w = − div
(
A(x) gradw

)
− div (B(x)w) + c(x)w (8)

We will assume that Eq. (2) (together with the homogenous Dirichlet condition) has global

(defined for all t ∈ R+) solutions of finite energy u ∈ C(R+,
◦
W 1

2 (Ω)) ∩ C1(R+, L2(Ω))) and the

solutions possess the pseudo-analyticity property: if u is a solution on R+ × Ω, T ≥ 0, ε > 0,

u = 0 on (T, T + ε)× Ω =⇒ u ≡ 0 on R+ × Ω. (9)

Let us recall that (in accordance with [6], [12], [13], [14]) a measurable function u : R+×Ω → R is

said to be globally oscillatory (about zero at +∞) if there exists (the so–called oscillatory time)

Θ > 0 such that for any interval J ⊂ R+, the length |J | of which is greater than Θ, the function

u changes the sign on J×Ω, i. e. we have simultaneously meas { (t, x) ∈ J×Ω | u(t, x) > 0 } > 0

and meas { (t, x) ∈ J × Ω | u(t, x) < 0 } > 0.

For u satisfying the property (9) an equivalent definition is possible: u : R+ × Ω → R, u �≡ 0

in R+ × Ω is globally oscillatory if and only if there exists Θ > 0 such that for any interval

J ⊂ R+ the following implication holds

u ≥ 0 (or u ≤ 0) on J × Ω =⇒ |J | ≤ Θ. (10)

Roughly speaking, this means, for a continuous function u (�≡ 0), that u has a zero in any

domain J × Ω where J ⊂ R+ is an interval the length of which is sufficiently large and this

length can be chosen independently of J .

For the operator L+ supplemented with the homogeneous Dirichlet boundary condition it is

well-known (cf. [2], [7], [21]) that under some regularity assumptions on the boundary ∂Ω

and coefficients there exist the so-called principal eigenvalue λ1 and an associated (principal)

eigenfunction v1. This means that L+v1 = λ1 v1 in Ω, both λ1 and v1 are real, λ1 is a simple

eigenvalue, i. e. v1 spans the null space ker (−L+ + λ1), v1 is positive in Ω, if ψ is a positive

eigenfunction with eigenvalue λ, then λ = λ1, for any eigenvalue λ: �λ ≥ λ1. Moreover, the

function v1 is bounded or, in fact, v1 ∈ C(Ω̄). We shall assume λ1 > 0 (which is equivalent

to the validity of “the maximum principle”; this happens, for example, if the function c is

nonnegative). In [2] also various bounds on λ1, especially positive lower bounds, are established.

In the sequel we use, in particular:

L+v1 = λ1v1 in Ω, λ1 > 0, v1 > 0 in Ω, v1 = 0 on ∂Ω. (11)
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3 Main result

Theorem: Let

inf
t∈R+

(
λ1β(t)

τ0
− α̇(t)

2τ0
− α

2(t)

4τ 20

)
= ω2 > 0. (12)

Then Eq. (2) (under homogeneous Dirichlet condition) is uniformly globally oscillatory, i. e.

there exists Θ > 0 such that any solution is globally oscillatory with the oscillatory time Θ, Θ

is given by formula

Θ =
π

ω
, ω =

√
inf

t∈R+

(λ1β

τ0
− α̇

2τ0
− α

2

4τ 20

)
. (13)

Proof. Let us make the projection of the equation on ker (−L+ + λ1) and define

u1(t) =

∫
Ω

u(t, x) v1(x) dx. (14)

We obtain the ordinary differential equation (where · = d/dt)

ü1 +
α

τ0
u̇1 +

βλ1

τ0
u1 = 0, t ∈ R+. (15)

Let us assume u ≥ 0 (or u ≤ 0) on J × Ω. Owing to (11), the positivity of v1, we get u1 ≥ 0

(or u1 ≤ 0) on J . The results of [20] (Section 8) together with the assumption (12) give:

|J | > π
ω

=⇒ u1 ≡ 0. Using again the positivity of v1, we obtain u ≡ 0 on J × Ω. Finally, due

to the property (9) we get u ≡ 0 on R+ × Ω and this completes the proof.

Remark. The method of the proof is based on [15], for conservative systems used in [5]. Similar

results on the hyperbolic diffusion equation with constant coefficients can be obtained by means

of the method described in [13] and based on results of [11], for more details see [19].
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1 Introduction

In the present paper we consider the nonlinear delay differential equation of the form

ẋ(t) = p(t)x(t)− q(t)x(t)x(τ(t)), t ≥ t0, (1)

where p, q ∈ C([t0,∞), [0,∞)), p(t) �≡ 0, q(t) �≡ 0, τ ∈ C([t0,∞), (0,∞)) is increasing function,
τ(t) ≤ t and lim

t→∞
τ(t) = ∞.

By a solution x(t) of Eq.(1) we mean a function x ∈ C([T − τ(T ),∞), R) for some T ≥ t0 and
such that the Eq.(1) is satisfied for t ≥ T .
A solution x(t) of Eq.(1) is said to be oscillatory if it has arbitrarily large zeros; otherwise it is
called nonoscillatory.
The autonomous ordinary differential equation

dN(t)

dt
= rN(t)

(
1− N(t)

K

)
, t ≥ 0, (2)
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where r,K ∈ (0,∞) is known as the logistic equation in mathematical ecology. The modification
of Eq.(2) has the form

dN(t)

dt
= rN(t)

(
1− N(t− τ)

K

)
, t ≥ 0, (3)

where r, τ,K ∈ (0,∞).The Eq.(3) is commonly known as the delay logistic equation and repre-
sents the dynamics of a single species population model. Here N(t) denotes the density of the
population at time t. The symbol r is the growth rate and K is the carrying capacity of the
environment. The term 1−N(t− τ)/K denotes a feedback mechanism which takes τ units of
time to respond to changes in the size of the population.
Our interest is focused on Eq.(1) which is a generalization of the delay logistic Eq.(3). We
shall develop some sufficient conditions for the existence of nonoscillatory bounded solutions of
Eq.(1).
The following fixed point lemma will be used to prove the main result in the next section.

Lemma 1.1 [2](Krasnoselskii’s Fixed Point Theorem)
Let X be a Banach space, let Ω be a bounded closed convex subset of X and let S1, S2 be maps
of Ω into X such that S1x + S2y ∈ Ω for every pair x, y ∈ Ω. If S1 is a contractive and S2 is
completely continuous then the equation

S1x+ S2x = x

has a solution in Ω.

2 Existence of nonoscillatory solutions

Theorem 2.1 Suppose that

∞∫
t0

p(t) dt <∞ (4)

and

∞∫
t0

q(t) dt <∞. (5)

Then Eq.(1) has a nonoscillatory bounded solution.

Proof. With regard to (4) and (5) we choose a T > t0 sufficiently large such that

∞∫
T

p(s) ds ≤ 1

3
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and ∞∫
T

Mq(s) ds ≤ c,

where c > 0, M = maxc≤x,y≤3c{xy}.
By C([t0,∞), R) we denote the set of all continuous bounded functions with the norm

||x|| = sup
t≥t0

|x(t)|.

Then C([t0,∞), R) is a Banach space.
We define a closed, bounded and convex subset Ω of C([t0,∞), R) as follows

Ω = {x = x(t) ∈ C([t0,∞), R) : c ≤ x(t) ≤ 3c, t ≥ t0}.

We now define two maps S1 and S2: Ω → C([t0,∞), R) as follows

(S1x)(t) =

⎧⎨
⎩ 2c−

∞∫
t

p(s)x(s) ds, t ≥ T,

(S1x)(T ), t0 ≤ t ≤ T,

(S2x)(t) =

⎧⎨
⎩

∞∫
t

q(s)x(s)x(τ(s)) ds, t ≥ T,

(S2x)(T ), t0 ≤ t ≤ T.
We shall show that for any x, y ∈ Ω we have S1x+ S2y ∈ Ω. For every x, y ∈ Ω and t ≥ T we
get

(S1x)(t) + (S2y)(t) = 2c−
∞∫
t

p(s)x(s) ds+

∞∫
t

q(s)y(s)y(τ(s)) ds

≤ 2c+

∞∫
t

Mq(s) ds ≤ 3c.

For t ∈ [t0, T ] we have

(S1x)(t) + (S2y)(t) = (S1x)(T ) + (S2y)(T ) ≤ 3c.

Furthermore for t ≥ T we obtain

(S1x)(t) + (S2y)(t) ≥ 2c−
∞∫
t

p(s)x(s) ds ≥ 2c− 3c

∞∫
t

p(s) ds ≥ 2c− c = c.

For t ∈ [t0, T ] we have

(S1x)(t) + (S2y)(t) = (S1x)(T ) + (S2y)(T ) ≥ c.
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Thus we have proved that S1x+S2y ∈ Ω for any x, y ∈ Ω. We shall show that S1 is a contraction
mapping on Ω. For x, y ∈ Ω and t ≥ T we have

|(S1x)(t)− (S1y)(t)| = |
∞∫
t

p(s)[x(s)− y(s)] ds| ≤
∞∫
t

p(s)|x(s)− y(s)| ds

≤
∞∫
t

p(s) ds ||x− y|| ≤ 1

3
||x− y||.

This implies that

||S1x− S1y|| ≤
1

3
||x− y||.

Also for t ∈ [t0, T ] we obtain the inequality above. We conclude that S1 is a contraction
mapping on Ω.
We now show that S2 is completely continuous. First we shall show that S2 is continuous. Let
xk = xk(t) ∈ Ω be such that xk(t) → x(t) as k → ∞. Because Ω is closed, x = x(t) ∈ Ω. For
t ≥ T we get

|(S2xk)(t)− (S2x)(t)| ≤
∞∫
t

q(s)|xk(s)xk(τ(s))− x(s)x(τ(s))| ds.

Since
|xk(s)xk(τ(s))− x(s)x(τ(s))| → 0 as k →∞,

by applying the Lebesgue dominated convergence theorem we obtain that

lim
k→∞

||(S2xk)(t)− (S2x)(t)|| = 0.

This means that S2 is continuous. We now show that S2Ω is relatively compact. By the Arzela-
Ascoli theorem it is sufficient to show that the family of functions {S2x : x ∈ Ω} is uniformly
bounded and equicontinuous on [t0,∞). The uniform boundednes follows from the definition
of Ω. For the equicontinuity we only need to show that for any given ε > 0 the interval [t0,∞)
can be decomposed into finite subintervals in such a way that on each subinterval all functions
of the family have change of amplitude less than ε. With regard to the conditions of theorem
for any ε > 0 we take T ∗ ≥ T large enough so that

∞∫
T ∗

q(s)x(s)x(τ(s)) ds ≤ ε
2
.

Then for x ∈ Ω, T2 > T1 ≥ T ∗ we get

|(S2x)(T2)− (S2x)(T1)| ≤ |(S2x)(T2)|+ |(S2x)(T1)|

=

∞∫
T2

q(s)x(s)x(τ(s)) ds+

∞∫
T1

q(s)x(s)x(τ(s)) ds ≤ ε
2

+
ε

2
= ε.
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For x ∈ Ω and T ≤ T1 < T2 ≤ T ∗ we obtain

|(S2x)(T2)− (S2x)(T1)| =
T2∫

T1

q(s)x(s)x(τ(s)) ds ≤ max
T≤s≤T ∗{q(s)x(s)x(τ(s))}(T2 − T1).

Then there exists δ > 0 such that

|(S2x)(T2)− (S2x)(T1)| < ε if 0 < T2 − T1 < δ.

For any x ∈ Ω, t0 ≤ T1 < T2 ≤ T we have

|(S2x)(T2)− (S2x)(T1)| = 0 < ε.

Then {S2x : x ∈ Ω} is uniformly bounded and equicontinuons on [t0,∞). Hence S2Ω is
relatively compact. By Lemma 1.1 there is x0 ∈ Ω such that S1x0 + S2x0 = x0. Thus x0(t) is
a positive bounded solution of Eq.(1). The proof is complete.

Corollary 2.2 Assume that
∞∫

t0

p(t) dt <∞.

Then nonlinear delay differential equation

ẋ(t) = p(t)[x(t)− x(t)x(τ(t))], t ≥ t0,

has a nonoscillatory bounded solution.

Example 1. Consider nonlinear delay differential equation

ẋ(t) = t exp(−t)x(t)− exp(−2t)x(t)x(τ(t)), t ≥ 0.

Since conditions (4), (5) are satisfied, this equation has a nonoscillatory bounded solution.

Example 2. Consider nonlinear neutral delay differential equation

ẋ(t) = exp(−t)x(t)− t exp(−t)x(t)x(τ(t)), t ≥ 0.

Since conditions (4), (5) are satisfied, this equation has a nonoscillatory bounded solution.
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Abstract. This paper deals with the discretization of the delay differential equations.
We pay the special attention to the θ-methods for these equations. In particular, we study
the qualitative behaviour of solutions of this method applied to the pantograph equation.
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1 Introduction

We consider the differential equation with a delayed argument in the form

y′(t) = a(t)y(t) + b(t)y(φ(t)), t ≥ t0, (1)

where a(t), b(t), φ(t) are continuous and real function on [t0,∞) and φ(t) < t for t > t0,
φ(t0) ≤ t0. The popular discretization of the equation (1) is the well-known θ method involving
e.g. Euler methods and trapezoidal rule as particular cases. The different approaches to this
type of a discretization are mentioned in [1, 11]. The aim of this paper is twofold: First
we describe and distinguish this approaches and comment relations between them. Secondly,
we consider the pantograph equation as the particular case of (1) via the choose φ(t) = λt,
0 < λ < 1, a(t) = a, b(t) = b, t0 = 0 and describe the asymptotic behaviour of the θ-
methods applied to the pantograph equation. We note, that this and related problems have
been extensively studied, e.g. in [2 - 10, 12]. On this account we make also some comparisons
with the known results.
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2 The derivation of the θ-methods

Integration of (1) yields

t∫
0

y′(τ)dτ =

t∫
0

a(τ)y(τ)dτ +

t∫
0

b(τ)y(φ(τ))dτ. (2)

We introduce the substitution u = φ(τ) and denote

ψ(u) := φ−1(u).

Then equation (2) becomes

y(t)− y(0) =

t∫
0

a(τ)y(τ)dτ +

φ(t)∫
0

b(φ−1(τ))ψ′(τ)y(τ)dτ.

After the discretization we get

yn+1 − yn =

t0+(n+1)h∫
t0+nh

a(τ)y(τ)dτ +

φ(t0+(n+1)h)∫
φ(t0+nh)

b(φ−1(τ))ψ′(τ)y(τ)dτ. (3)

The integrals on the right-hand side of (3) can be approximated by use of the explicit rectangular
formula as well as implicit rectangular formula. We denote: yn ≈ y(t0+nh), bn = b(t0+nh), an =
a(t0 + nh) and φn = φ(t0 + nh) .

First we approximate both integrals on the right-hand side of the equation (3) using the
rectangular formula with the left grid point, i.e.

t0+(n+1)h∫
t0+nh

a(τ)y(τ)dτ ≈ hanyn,

φn+1∫
φn

b(φ−1(τ))ψ′(τ)y(τ)dτ ≈ (φn+1 − φn)bnψ
′ (φn) y (φn) .

The equation (3) becomes

yn+1 = yn + hanyn + bn (φn+1 − φn)ψ′ (φn) y(φn). (4)

Since the point φn is not usually a grid point, we define the value y(φn) as the linear interpolation

y (φn) := (1− rn) y�φn−t0
h

� + rny�φn−t0
h

�+1
, (5)

where rn := φn−t0
h
− �φn−t0

h
�.
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Now we proceed to another way of discretization, which is based on the fact that integrals
on the right-hand side of the equation (3) are approximated using the rectangular formulae with
the right grid point. Since the substitution of the first integral is quite simple, it is omitted
here. The substitution of the second integral has the form

φn+1∫
φn

b(φ−1(τ))ψ′(τ)y(τ)dτ ≈ (φn+1 − φn)bn+1ψ
′ (φn+1) y (φn+1) .

After performing all the operations mentioned above we get

yn+1 = yn + han+1yn+1 + bn+1 (φn+1 − φn)ψ′ (φn+1) y(φn+1). (6)

Now we have the same problem as above. The point φn+1 is not usually a grid point. Thus we
define the value y(φn+1) as the linear interpolation. To simplify the resulting relation we use
the same grid points as in (5) i.e.

y (φn+1) := (1− kn) y�φn−t0
h

� + kny�φn−t0
h

�+1
, (7)

where kn := φn+1−t0
h

− �φn−t0
h
�. We note that the value kn can be greater then 1.

The linear combination of (4) and (6) yields

yn+1 = yn + h((1− θ)anyn + θan+1yn+1)

+(φn+1 − φn)((1− θ)bnψ′ (φn) y(φn) + θbn+1ψ
′ (φn+1) y(φn+1)), (8)

where θ ∈ [0, 1] and y(φn), y(φn+1) are given by (5) and (7). Note, that equation (8) for θ = 1/2
was derived using the procedure stated in [1].

Now we present another way of discretization of (1). Rewrite the equation (1) as

yn+1 − yn =

t0+(n+1)h∫
t0+nh

a(τ)y(τ)dτ +

t0+(n+1)h∫
t0+nh

b(τ)y(φ(τ))dτ. (9)

Both integral on the right-hand side of the equation (9) are replaced as follows: They are
approximated by using rectangular formulae by using left grid point at first. The approximation
of the second integral is in the form

t0+(n+1)h∫
t0+nh

b(τ)y(φ(τ))dτ ≈ hbny(φn).

Thus we get
yn+1 = yn + hanyn + hbny(φn). (10)

Similarly we can arrive at

yn+1 = yn + han+1yn+1 + hbn+1y(φn+1). (11)
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The linear combination of (10) and (11) yields the θ method in the form

yn+1 = yn + h((1− θ)anyn + θan+1yn+1) + h((1− θ)bny(φn) + θbn+1y(φn+1)), (12)

where y(φn) and y(φn+1) are given by (5), (7) respectively. Note that this equation can be also
found in [11], where y(φn+1) is calculated via the linear interpolation utilizing the left and right
neighborhoods of φn+1.

3 Some auxiliary results

In this section we deal with the case, where a(t) = a, b(t) = b and φ(t) = λt, 0 < λ < 1, t0 = 0.
In such a case the equation (1) becomes

y′(t) = ay(t) + by(λt), t ≥ 0, (13)

and the formula (8) as well as formula (12) give the recurrence relation

yn+1 = Ryn + S
(
βny�λn� + αny�λn�+1

)
, (14)

where R := 1+(1−θ)ah
1−θah

, S := bh
1−θah

, βn := 1− αn and αn := λn − �λn�+ θλ.
Furthermore we assume

η = η(θ, λ) := sup
n∈Z+

(|βn|+ |αn|) <∞, |R| < 1.

Next lemma can be found in the particular case θ = 1/2 in [1, Theorem 6].

Lemma 3.1 Let 0 < λ < 1, 0 ≤ θ ≤ 1. Then the function η(θ, λ) has the following values:

η(θ, λ) =

⎧⎨
⎩

1, λ = K/L, θK ≤ 1, K, L ∈ {1, 2, 3, . . . } and relatively prime,
1 + 2θλ− 2

L
, λ = K/L, θK ≥ 1, K, L ∈ {2, 3, . . . } and relatively prime,

1 + 2θλ, λ irrational.
(15)

Proof. First note that 1 ≤ η(θ, λ) ≤ 1 + 2θλ. Now assume λ = K
L

where 1 ≤ K < L and
(K,L) are relatively prime. It is known that

nK

L
− �nK
L
� =
nK mod L

L
.

Then

sup
n∈Z+

αn = θλ+ sup
n∈Z+

(λn− �λn�) = θλ+
L− 1

L
= 1 + θλ− 1

L
.

Thus the first two cases of (15) hold.
Let λ be irrational number. The case θ = 0 is trivial, hence we deal only with the case

θ �= 0. In this case for every ε > 0, ε < θλ there exist an nε such that

1− ε < λnε − �λnε�.
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Furthermore,
αnε > 1 + θλ− ε > 1

and we arrive at
η(θ, λ) ≥ αnε + |1− αnε| = 1 + 2θλ− 2ε.

Now we get η(θ, λ) ≥ 1 + 2θλ, because of ε > 0 can be made arbitrary small. �

Now we present the inequality which is useful in our further calculations. This inequality
has the form:

|S|
(
|βn|ρ�λn� + αnρ�λn�+1

)
≤ (1− |R|)ρn, n = 0, 1, . . . (16)

Lemma 3.2 The sequence

ρn :=

{ (
n− 1

1−λ

)− logλ γ
for γ ≥ 1,(

n+ 1
1−λ

)− logλ γ
for 0 < γ < 1

(17)

where

γ :=
|S|η

1− |R| (18)

defines the solution of inequality (16).

Proof. We only deal with the case 0 < γ < 1 because the case γ ≥ 1 is analogous. If 0 < γ < 1,
then (ρn) is a decreasing sequence. Hence, we can write

|S|
(
|βn|ρ�λn� + αnρ�λn�+1

)
≤ |S|(|βn|+ αn)ρ�λn� = |S|ηρ�λn�.

Further

|S|ηρ�λn� = |S|η(�λn�+
1

1− λ)− logλ γ

≤ |S|η(λn− 1 +
1

1− λ)− logλ γ

= (1− |R|)ρn.

4 Main result

This section presents the main result of this paper. First we introduce the following notation.
If yn is a solution of (14) and ρn is given by (17), then we denote

B0 := sup(|yn|/ρn, n ∈ [�λσ0�, σ0] ∩ Z+), (19)

where

σ0 ≥ max

(
2

(1− λ)λ, 2 logλ γ

)
(20)
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is arbitrary integer number. Furthermore, we denote

L := max

(
logλ γ

γ(1− |R|)(σ0 − 1+λ
1−λ

)
,

2 logλ γ

σ0 − 1+λ
1−λ

)
. (21)

Now we can formulate the main theorem of this paper.

Theorem 4.1 Let yn be a solution of (14), where a < 0, b �= 0, λ ∈ (0, 1) and let γ, B0, σ0, L
be given by (18)-(21). Then

|yn| ≤ B0e
L

1−λn− logλ γ for n = σ0, σ0 + 1, σ0 + 2, . . . . (22)

Proof. We use the substitution zn = yn/ρn in (14), where �n is given by (17). Then

�n+1zn+1 = R�nzn + S
(
βnρ�λn�z�λn� + αnρ�λn�+1z�λn�+1

)
. (23)

Now we choose σ0 ≥ max( 2
(1−λ)λ

, 2 logλ γ), σ0 ∈ Z+ and define points σm+1 := �σm−1
λ
�, where

m = 0, 1, . . . . After some calculations, we obtain

λ−m
(
σ0 −

1 + λ

1− λ
)
≤ σm ≤ λ−1σm−1, m = 1, 2, . . . . (24)

Next we introduce intervals I0 := [�λσ0�, σ0] ∩ Z+, Im+1 := [σm, σm+1] ∩ Z+ and denote Bm :=
sup(|zs|, s ∈ ∪m

j=0Ij), m = 0, 1, 2 . . . .
Now we choose n� ∈ Im+1, n

� > σm arbitrarily and we distinguish two cases with respect to
R.

(i) First, we deal with the case R = 0. In this case

zn� =
S

ρn�

(
βn�−1ρ�λ(n�−1)�z�λ(n�−1)� + αn�−1ρ�λ(n�−1)�+1z�λ(n�−1)�+1

)
,

Thus

|zn�| ≤ Bm
|S|
ρn�

(
|βn�−1|ρ�λ(n�−1)� + αn�−1ρ�λ(n�−1)�+1

)
Using (16), we get

|zn�| ≤ (1− |R|)ρn�−1

ρn�

Bm ≤
ρn�−1

ρn�

Bm.

Assuming γ ≥ 1, (�n) is the nondecreasing sequence and we obtain |zn�| ≤ Bm. Assuming
0 < γ < 1 we derive with respect to (17), (24) and the binomial formula the relation

ρn�−1

ρn�

=

(
n� + 1

1−λ
− 1

n� + 1
1−λ

)− logλ γ

≤ 1(
1 + 1

σm

)− logλ γ
≤ 1

1 + − logλ γ
σm

≤ 1 +
2 logλ γ

σm

.

This inequality implies the following relation

|zn�| ≤ Bm

(
1 +

2 logλ γ

σ0 − 1+λ
1−λ

λm

)
. (25)
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(ii) Let R �= 0 . We can multiply the equation (23) by 1
Rn+1 . We get

Δ
(�nzn
Rn

)
=
S

Rn+1

(
βnρ�λn�z�λn� + αnρ�λn�+1z�λn�+1

)
.

If we sum this relation from σm to n� − 1, then we obtain

�n�zn�

Rn� − �σmzσm

Rσm
=

n�−1∑
p=σm

S

Rp+1

(
βpρ�λp�z�λp� + αpρ�λp�+1z�λp�+1

)
,

i.e.

zn� =
�σm

�n�

Rn�

Rσm
zσm +

Rn�

�n�

n�−1∑
p=σm

S

Rp+1

(
βpρ�λp�z�λp� + αpρ�λp�+1z�λp�+1

)
.

Thus

|zn� | ≤ �σm

�n�

|R|n�

|R|σm
|zσm |+

|R|n�

�n�

n�−1∑
p=σm

|S|
|R|p+1

∣∣βpρ�λp�z�λp� + αpρ�λp�+1z�λp�+1

∣∣

≤ Bm

(
�σm

�n�

|R|n�

|R|σm
+
|R|n�

�n�

n�−1∑
p=σm

|S|
|R|p+1

(
|βp|ρ�λp� + αpρ�λp�+1

))
.

Using (16), we get

|zn�| ≤ Bm

(
�σm

�n�

|R|n�

|R|σm
+
|R|n�

�n�

n�−1∑
p=σm

1− |R|
|R|p+1

ρp

)
.

Now using the relation
1− |R|
|R|p+1

= Δ

(
1

|R|

)p

(26)

and summing by parts we obtain

|zn�| ≤ Bm

(
�σm

�n�

|R|n�

|R|σm
+
|R|n�

�n�

n�−1∑
p=σm

Δ

(
1

|R|

)p

ρp

)

= Bm

(
1− |R|

n�

�n�

n�−1∑
p=σm

1

|R|p+1
Δρp

)
.

Now with respect to (26), we get

|zn�| ≤ Bm

(
1− |R|

n�

�n�

n�−1∑
p=σm

Δρp
1− |R|Δ

(
1

|R|

)p
)
.
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If γ ≥ 1 then ρp is nondecreasing, therefore Δρp ≥ 0 and |zn�| ≤ Bm. In the case 0 < γ < 1,
the same simple calculations are necessary to derive that Δρp is negative and nondecreasing.
Hence we can write

|zn�| ≤ Bm

(
1− |R|n�

1− |R|
Δρσm

�n�

n�−1∑
p=σm

Δ

(
1

|R|

)p
)

= Bm

(
1− |R|n�

1− |R|
Δρσm

�n�

(
1

|R|n� −
1

|R|σm

))

≤ Bm

(
1 +

1

1− |R|
−Δρσm

�σm+1

)
.

Substituting the corresponding form of ρn and using the binomial formula, we can derive

−Δρσm = (σm +
1

1− λ)− logλ γ(1− (1 +
1

σm + 1
1−λ

)− logλ γ)

≤ (σm +
1

1− λ)− logλ γ(1− (1 +
− logλ γ

σm + 1
1−λ

))

≤ (σm +
1

1− λ)− logλ γ logλ γ

σm

.

Analogically,

ρσm+1 = (σm+1 +
1

1− λ)− logλ γ

≥ (
1

λ
σm +

1

1− λ)− logλ γ

≥ (
1

λ
σm +

1

λ

1

1− λ)− logλ γ

= γ(σm +
1

1− λ)− logλ γ.

Now we arrive at the estimate

−Δρσm

ρσm+1(1− R̃)
≤ logλ γ

γ(1− |R|)
1

σm

≤ logλ γ

γ(1− |R|)
1

(σ0 − 1+λ
1−λ

)
λm .

by use of (24). Hence

|zn�| ≤ Bm(1 +
logλ γ

γ(1− |R|)(σ0 − 1+λ
1−λ

)
λm) . (27)

Summarizing cases (i)-(ii) and using estimates (25) and (27) we get

|zn� | ≤ Bm(1 + Lλm) as m→∞

for arbitrary n� ∈ Im+1, n
∗ > σm. Thus

Bm+1 ≤ Bm(1 + Lλm) as m→∞
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Now we can estimate Bm in this way:

Bm+1 ≤ Bm (1 + L (λm)) ≤ B0

m∏
j=0

(
1 + L

(
λj
))
≤ B0e

L
1−λ .

Thus
Bm ≤ B0e

L
1−λ as m→∞

and the estimate (22) is proved. �

Example 4.2 Let us consider the equation (13) in the form

y′(t) = −y(t)− 0.5y(3t/4), t ≥ 0, y(0) = 1. (28)

The formula (14) with θ = 1/3 and the stepsize h = 0.05 gets

y0 = 1,

yn+1 =
58

61
yn −

30

61
(βny�3n/4� + αny�3n/4�+1),

where

αn =
3n

4
− �3n

4
�+

1

4
< 1, βn = 1− αn,

Now if we set σ0 = 1000, then using Theorem 4.1 we obtain the estimate

|yn| ≤ 42n−2.4, for n = 1000, 1001, . . . (29)

Note, that this estimate corresponds with estimate for exact solution (28) (see. [5, 6]).
The Fig. 1 displays the real numerical solution of the problem (28) and its estimate given

by (29).

5 Some comparisons

In this section we compare the asymptotic estimate (22) with the known results. Let us assume
first that

|R|+ |S|η ≤ 1, a < 0, θ = 1/2.

Under this assumption it is shown in [1] that any solution yn of (14) is bounded and, further-
more, the following asymptotic estimate holds:

yn = O(n− logλ(|R|+|S|η)) as n→∞. (30)

Let us compare now the asymptotic estimate (22) with (30). It is easy to show, that if
|R|+ |S|η < 1 then

γ =
|S|η

1− |R| < |R|+ |S|η.
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Fig. 1:

After substitution for |R| a |S| we get

γ =

{
η|b/a| for (1− θ)h|a| ≤ 1,
h|b|η/(2 + h|a|(2θ − 1)) for (1− θ)h|a| > 1.

The Lemma 3.1 implies that if λ = K/L where K,L ∈ {1, 2, 3, . . .} are relatively prime
then we can put θ = 1/K and obtain γ = |b/a| with a restriction on the stepsize h. In the case
θ = 1 and λ = 1/L we get the value |b/a| without any restriction to the stepsize h. If θ = 0
then η = 1 and we get the value |b/a| provided h ≤ 1/|a|.
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A PSEUDOHYPERBOLIC PROBLEM
FOR VON A KÁRMÁN SYSTEM

KEČKEMÉTYOVÁ Mária, (SK), BOCK Igor, (SK)

Abstract. The existence and the uniqueness of solutions is proved for dynamic prob-
lems of perpendicular vibrations of von Kármán plates whose viscosity has the character
of a short memory. The boundary conditions describe the plate partly clamped and
partly free. The existence of a weak solution is verified after transforming the system
to one pseudohyperbolic initial-boundary value problem and using the Galerkin method.
The energy dissipation is verified.
Key words and phrases. von Kármán plates, short memory, existence and uniqueness
of solutions, energy behavior.
Mathematics Subject Classification. Primary 35L70, 74D10; Secondary 74K20.

1 Introduction and notation

Dynamic problems for viscoelastic structures represent an important but complex topic of
applied mathematics. The effect of viscoelasticity for the damping of the energy of the vibrating
structure plays very important role. The aim of the present paper is to study the nonlinear
models of von Kármán plates. The presented results also extend the research made for the
quasistatic contact problems for these plates. The case of anisotropic plate was studied in [1].
The paper [2] describes the isotropic case using the Rothe’s method with respect to the time
variable. In both cases the existence of solution could be proved only for sufficiently small right-
hand sides. In the dynamic case the existence and the uniqueness can be verified for right-hand
sides without any upper bounds. The dynamic problems for viscoelastic von Kármán plates
with a long memory was studied in [8], where a viscosity memory term appears only in the
equation for the deflection of the plate. We study the case, where the short memory viscosity
appears in both equations of the von Kármán system. The existence of a solution is proved
using the Galerkin method.
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Let Ω be a bounded domain with a Lipschitz boundary Γ = Γ̄0 ∪ Γ̄1, Γ0 ∩ Γ1 = ∅. We
assume thatmeas(Γ0) > 0 and Γ0 is not a straight line. The unit outer normal vector is denoted
by n = (n1, n2), τ = (−n2, n1) is the unit tangent vector. The displacement is denoted by
u ≡ (ui). Further we denote:

∂

∂s
≡ ∂s,

∂2

∂s∂r
≡ ∂sr, ∂i = ∂xi

, i = 1, . . . , N.

Let I ≡ (0, T ) be a bounded time interval and

Q = I ×Ω, S = I × Γ, Si = I × Γi, i = 0, 1.

We denote by W k
p (M) with k ≥ 0 and p ∈ [1,∞] the Sobolev spaces of functions defined

on a domain or an appropriate manifold M . By W̊ k
p (M) we denote the spaces with zero traces

on ∂M . If p = 2 we use the notation Hk(M), H̊k(M). For the anisotropic spaces W k
p (M)

k = (k1, k2) ∈ R2
+, k1 is related with the time while k2 with the space variables (with the

obvious consequences for p = 2) provided M is a time-space domain. The duals to H̊k(M) are
denoted by H−k(M). By C we denote the space of continuous functions with the appropriate
sup–norm. For a Banach spaceX the space of functions f : I �→ X with a norm ‖f(·)‖X ∈ Lp(I)
is denoted by Lp(I;X).

Strain tensor

εij(u) =
1

2
(∂iuj + ∂jui + ∂iu3∂ju3)− x3∂iju3, i, j = 1, 2, εi3 ≡ 0, i = 1, 2, 3

with nonlinearities appeared in partial derivatives of perpendicular deflections corresponds to
plates with moderately large deflections.

Let δij be the Kronecker symbol. We employ the Einstein summation convention. The
viscoelastic constitutional law has the form

σij(u) =
E1

1− ν2
∂t
(
(1− ν)εij(u) + νδijεkk(u)

)
+
E0

1− ν2

(
(1− ν)εij(u) + νδijεkk(u)

)
.

The constants E0, E1 > 0 and ν ∈
(
0, 1

2

)
are the Young modulus of elasticity, the mod-

ulus of viscosity and the Poisson ratio, respectively. In the sequel we shall use the following
abbreviations:

a =
h2

12
, b =

h2

12�(1− ν2)
,

where h is the the plate thickness and � is the density of the material. Moreover, we introduce

[u, v] ≡ ∂11u∂22v + ∂22u∂11v − 2∂12u∂12v, u, v ∈ H2(Ω).

the important Poisson bracket.
The following generalization of the Aubin’s compactness lemma verified in [5] Theorem 3.1

will be essentially used:

Lemma 1.1 Let B0 ↪→↪→ B ↪→ B1 be Banach spaces, the first reflexive and separable. Let
1 < p <∞, 1 ≤ q <∞. Then

W ≡ {v; v ∈ Lp(I;B0), v̇ ∈ Lq(I, B1)} ↪→↪→ Lp(I;B).
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2 Existence and uniqueness of a solution

2.1 Problem formulation

Applying the approach used in the classical theory of von Kármán equations for elastic plates
(see [3]) we obtain in the dynamic case the classical formulation composed of the system

ü− a�ü+ b(E1�2u̇+ E0�2u)− [u, v] = f,
�2v + E1∂t[u, u] + E0[u, u] = 0

}
on Q, (1)

the boundary conditions

u = ∂nu = 0 on S0, M(u) = Σ(u) = 0 on S1,
v = ∂nv = 0 on S

(2)

where

M(u) = b[E1M(u̇) + E0M(u)],

M(u) = �u+ (1− ν)(2n1n2∂12u− n2
1∂22u− n2

2∂11u);

Σ(u) = b[E1V (u̇) + E0V (u)]− a∂nü,
V (u) = ∂n�u+ (1− ν)∂τ [(n2

1 − n2
2)∂12u+ n1n2(∂22u− ∂11u)],

and the initial conditions
u(0, ·) = u0, u̇(0.·) = u1 on Ω. (3)

The unknown functions u, v express the deflection of the middle plane of the plate and the Airy
stress function respectively. The plate is acting upon a perpendicular load f .

For u, y ∈ L2(I;H
2(Ω)) we define the following bilinear form

A : (u, y) �→ b
(
∂kku∂kky + ν(∂11u∂22y + ∂22u∂11y) + 2(1− ν)∂12u∂12y

)
(4)

almost everywhere on Q and introduce a set

V = {y ∈ H2(Ω) : y = ∂ny = 0 on Γ0}.

The set V is a Hilbert space with a scalar product and a norm

((y, z)) =

∫
Ω

�y�z dx, ‖y‖ = ((y, y)1/2

equivalent with the obvious norm ‖ · ‖2 in a Sobolev space H2(Ω) (see [7], chapter 10).
The problem (1), (2), (3) has then the variational formulation:

Look for {u, v} ∈ H1,2(Q) × L2(I; H̊
2(Ω)) such that u̇ ∈ L2(I;V ), ü ∈ L2(I;H

1(Ω)), the
following system∫

Ω

(a∇ü · ∇z1 + üz1 + E1A(u̇, z1) + E0A(u, z1)− [u, v] z1) dx =

∫
Ω

fz1 dx, (5)
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∫
Ω

(
�v�z2 + (E1∂t[u, u] + E0[u, u])z2

)
dx = 0 (6)

is satisfied for any (z1, z2) ∈ V × H̊2(Ω) and the conditions (3) remain valid.

We define the bilinear operator Φ : H2(Ω)2 → H̊2(Ω) by means of the variational equation∫
Ω

�Φ(u, v)�ϕdx =

∫
Ω

[u, v]ϕdx, ϕ ∈ H̊2(Ω). (7)

The equation (7) has a unique solution, because [u, v] ∈ L1(Ω) ↪→ H2(Ω)∗. The well-
defined operator Φ is evidently compact and symmetric. Moreover, due to Lemma 1 from [6]
Φ : H2(Ω)2 → W 2

p (Ω), 2 < p <∞ and

‖Φ(u, v)‖W 2
p (Ω) ≤ c‖u‖H2(Ω)‖v‖W 1

p (Ω) ∀u ∈ H2(Ω), v ∈W 1
p (Ω). (8)

With the help of the operator Φ we get the following reformulation of (5,6):

Problem P .

We look for u ∈ H1,2(Q) such that u̇ ∈ L2(I;H
2;V ), ü ∈ L2(I;H

1(Ω)), the equation∫
Ω

(
a∇ü · ∇z + üz + E1A(u̇, z) + E0A(u, z) + [u,E1∂tΦ(u, u) + E0Φ(u, u)]z

)
dx

=

∫
Ω

fz dx

(9)

holds for any z ∈ V and the conditions (3) remain valid.

We shall verify the existence and the uniqueness of a solution to the Problem P.

Theorem 2.1 Let f ∈ L2(Q), ui ∈ H2(Ω), i = 0, 1. Then there exists a unique solution
u ∈ H1,2(Q) of the problem P .

If v = −E1∂tΦ(um, um) − E0Φ(um, um), then a couple {u, v} is a unique solution of the
problem (5), (6), (3).

Proof. (i) The existence. We shall apply the Galerkin method. Let us denote by {wi ∈
H2(Ω); i ∈ N} a orthonormal basis of H2(Ω). We construct the Galerkin approximation um of
a solution in a form

um(t) =
m∑

i=1

αi(t)wi, αi(t) ∈ R, i = 1, ...,m, m ∈ N

given by the solution of the approximated problem∫
Ω

(
a∇üm(t) · ∇wi + üm(t)wi + E1A(u̇m(t), wi) + E0A(um(t), wi)

+ [um(t), wi](E1∂tΦ(um, um)(t) + E0Φ(um, um)(t) )
)
dx

=

∫
Ω

f(t)wi dx, i = 1, ...,m,

(10)

um(0) = u0m, u̇m(0) = u1m, uim → ui in H2(Ω), i = 0, 1. (11)
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The matrix A = (aij), aij =
∫

Ω
(a∇wi · ∇wj + wiwj) dx is positively definite. The system (10)

can then be expressed in the form

α̈i = Fi(t, α̇1, ..., α̇m, α1, ..., αm), i = 1, ...,m.

Its right-hand side satisfies the conditions for the local existence of a solution fulfilling the initial
conditions corresponding the functions u0m, u1m. Hence there exists a Galerkin approximation
um(t) defined on some interval Im ≡ [0, tm], 0 < tm < T . In order to receive the conditions for
the prolongation of a solution to the whole interval I ≡ [0, T ] we derive the a priori estimates
of {um} not dependent on tm. Let Qm = [0, tm] × Ω. After multiplying the equation (10) by
α̇i(t), summing up with respect to i and integrating and taking in mind the property

∫
Ω

[u, v]y dx =

∫
Ω

[u, y]v dx, (12)

if at least one element of {u, v, y} belongs to H̊2(Ω), cf. [3] we get

∫
Qm

1

2
∂t
(
a|∇u̇m(t)|2 + u̇2

m(t) + E0A(um(t), um(t)) +
E0

2
(�Φ(um, um))2

)
+

+ E1A(u̇m(t), u̇m(t)) +
E1

2

(
�∂tΦ(um, um)(t)

)2
dxdt =

∫
Qm

f(t)u̇m(t) dxdt,

(13)

and

‖ ˙um‖2
L2(Im;H2(Ω)) + ‖ ˙um‖2

L∞(Im;H1(Ω)) + ‖um‖2
L∞(Im;H2(Ω)) + ‖∂tΦ(um, um)‖2

L2(Im;H2(Ω))

≤ c ≡ c(f, u0, u1),
(14)

‖∂tΦ(um, um)‖L2(Im;W 2
p (Ω)) ≤ cp ≡ cp(f, u0, u1)∀ p > 2, Im = (0, tm). (15)

As the right-hand side of the estimate (14) does not depend on m we can set tm = T .

The estimate (15) further implies

[um, E1∂tΦ(um, um) + E0Φ(um, um)] ∈ L2(I;Lr(Ω)), r =
2p

p+ 2
,

‖[um, E1∂tΦ(um, um) + E0Φ(um, um)]‖L2(I;Lr(Ω)) ≤ cr ≡ cr(f, u0, u1).

(16)

After multiplying the equation (10) by α̈i(t), summing up with respect to i and integrating we
obtain the estimate of ü

‖üm‖2
L2(I;H1(Ω)) ≤ c, m ∈ N. (17)

The estimate (16) and the imbedding Lq(Ω) ↪→ H1(Ω), q = 2p
p−2

play the crucial role in deriving

(17).

We proceed with the convergence of the Galerkin approximation. Applying the estimates
(14-17) and the Aubin-Lions compactness lemma we obtain a subsequence of {um} (again
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denoted by {um}) and a function u such that

u̇m ⇀
∗ u̇ in L∞(I;H1(Ω)),

u̇m ⇀ u̇ in L2(I;H
2(Ω)),

üm ⇀ ü in L2(I;H
1(Ω)),

u̇m → u̇ in Lp(I;H
1(Ω)) ∩ L2(I;H

2−ε(Ω)) ∀ε ∈ (0, 1),

um → u in C0(I;W
1
p (Ω)),

∂tΦ(um, um)⇀ ∂tΦ(u, u) in L2(I;W
2
p (Ω)).

(18)

The fourth convergence follows for p ≤ 2 from the second and third one via the compact
imbedding theorem, for p > 2 by interpolation of the previous result with the first convergence.
The fifth convergence um → u in (18) follows from the second and the fourth one by a stan-
dard interpolation and imbedding technique (cf. [4], Chapter 2). The last convergence is a
consequence of (8) and the second and fifth convergence.

Let μ ∈ N and zμ =
∑m

i=1 φi(t)wi, φi ∈ D(0, T ), i = 1, ..., μ. We have for arbitrary m ∈ N

and t ∈ I the relation∫
Ω

(
a∇üm(t) · ∇zμ(t) + üm(t)zμ(t) + E1A(u̇m(t), zμ) + E0A(um(t), zμ(t))

+ [um(t), zμ(t)](E1∂tΦ(um, um)(t) + E0Φ(um, um)(t) )
)
dx =

∫
Ω

f(t)zμ(t) dx.

The convergence process (18) and the property (12) imply that a function u fulfils∫
Q

(
a∇ü · ∇zμ + üzμ + E1A(u̇, zμ) + E0A(u, zμ) + [u,E1∂tΦ(u, u) + E0Φ(u, u)]zμ

)
dx dt

=

∫
Q

fz dx dt.

Functions {zμ} form the dense subset of the set L2(I;H
2(Ω)) and hence a function u fulfils the

identity (9). The initial conditions (3) follow due to (11) and the proof of the existence of a
solution is complete.

(ii) The uniqueness. Let u, û be two solutions of Problem P and let w = u− û. We have
for arbitrary s ∈ I, Qs = [0, s]×Ω the relation∫

Qs

(
a∇ẅ · ∇z + ẅz + E1A(ẇ, z) + E0A(w, z)

+ ([u,E1∂tΦ(u, u) + E0Φ(u, u)]− [û, E1∂tΦ(û, û) + E0Φ(û, û)])z
)
dx dt = 0,

∀z ∈ L2(I;H
2(Ω)),

w(0, .) = ẇ(0, .) = 0 on Ω.

After setting z = ẇ we get

1

2

(
a‖∇ẇ‖L2(Ω)2 + ‖ẇ‖L2(Ω) + E0

∫
Ω

A(w,w)dx
)
(s) + E1

∫
Qs

A(ẇ, ẇ) dx dt

=

∫
Qs

(
[û, E1∂tΦ(û, û) + E0Φ(û, û)]− [u,E1∂tΦ(u, u) + E0Φ(u, u)]

)
ẇ dx dt.

106 volume 2 (2009), number 2



Aplimat - Journal of Applied Mathematics

Using the estimate (16) with u and û instead of um and the imbedding Lq(Ω) ↪→ H1(Ω),
q = 2p

p−2
we obtain the inequality

‖ẇ‖2
H1(Ω)(s) ≤ c

∫ s

0

‖ẇ‖2
H1(Ω)(t) dt for every s ∈ I.

The Gronwall lemma implies

‖ẇ‖H1(Ω)(s) = 0 for every s ∈ I

and the uniqueness of a solution follows due to zero initial conditions for w ≡ u− û.

3 Behavior of the energy

The aim of this section is to analyze the asymptotic behavior of the complete energy of the
plate as t tends to ∞. For every t ≥ 0 we define the energy functional

E(t) =
1

2

∫
Ω

(
u̇2 + a|∇u̇|2 + E0A(u, u) +

1

2
E0(�Φ(u, u))2 − 2fu

)
(t, x) dx. (19)

It can be expressed as a sum of the kinetic and the potential energy of the plate acting under
the force f . For simplicity we consider further the stationary right-hand e.g. f(t, x) ≡ f(x). A
following theorem expresses the decay of the energy.

Theorem 3.1 It holds

E ′(t) ≤ 0 ∀t ∈ (0,∞) (20)

and hence

E(t2) ≤ E(t1) ∀t1 ≤ t2, ti ∈ (0,∞), i = 1, 2. (21)

Moreover, if f = 0 then

lim
t→∞

E1(t) = 0, (22)

where

E1(t) =
1

2

∫
Ω

(
u̇2 + a|∇u̇|2

)
dx

corresponds to the kinetic energy of the plate.

Proof. After inserting z = u̇ in (9) we obtain the relation

1

2

d

dt

∫
Ω

(
u̇2 + a|∇u̇|2 + E0A(u, u) +

1

2
E0(�Φ(u, u))2 − 2fu

)
(t, x)dx

= E ′(t) = −
∫

Ω

(
E1A(u̇, u̇) + 2E1(�Φ(u̇, u))2(t, x)

)
dx ≤ 0

and the decay of energy is verified.
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If f = 0, then we have the relation E(t) = E(0)−
∫ t

0
E2(s) ds, where

E2(t) =

∫
Ω

(
E1A(u̇, u̇) + 2E1(�Φ(u̇, u))2(t, x)

)
dx.

We have
∫∞
0
E2(t) dt <∞ and hence

∫∞
0
E1(t) dt <∞. Due to the uniform continuity of E1 on

(0,∞) the convergence (22) follows.

Remark 3.2 It is possible to verify for sufficiently small right-hand sides f(t, x), t > 0, x ∈ Ω
that in the case

lim
t→∞

∫
Ω

(f(t, x)− f∞(x))2 dx = 0

the solution {u(t, .), v(t, .} tends to a weak solution {u∞, v∞} ∈ V ×H̊2(Ω) of the corresponding
elastic problem

E0�2u− [u, v] = f∞,
�2v + E0[u, u] = 0

}
on Ω,

u = ∂nu = 0 on Γ0, M(u) = V (u) = 0 on Γ1,
v = ∂nv = 0 on Γ.

Remark 3.3 Similar results can be obtained in the case of a long memory of a decreasing
exponential type using for instance in the paper [8], where the memory appeared only in the first
equation of the system.
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[4] C. ECK, J. JARUŠEK and M. KRBEC: Unilateral Contact Problems in Mechanics. Varia-
tional Methods and Existence Theorems. Monographs & Textbooks in Pure & Appl. Math.
No. 270.
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STRICT FIXED POINT PRINCIPLES AND APPLICATIONS
TO MATHEMATICAL ECONOMICS

MUREŞAN Anton S., (RO)

Abstract.In this paper we give some new results on strict fixed points for multivalued
operators. We prove that there exists at least a strict fixed point, and we give conditions
which assure that if the strict fixed point set of a multivalued operator is nonempty then the
fixed point set and the strict fixed point set are equal. Some applications to mathematical
economics are given too.
Key words and phrases. multivalued operators, fixed points, strict fixed points, ab-
stract economy
Mathematics Subject Classification. 47H10, 54H25, 90B15, 91B52

1 Introduction

In the theory of fixed points for singlevalued or multivalued operators have been given several
results.

The theory of strict fixed points of multivalued operators has been less investigated. After
knowledge of author, a synthesis book having as an exclusive subject the strict fixed points
does not exists.

However, some important results on strict fixed points were obtained by many authors like:
I.A. Rus [20],[22]-[24], A. Petruşel [17], A. Muntean [10], A.S. Mureşan [11], A. Ŝıntămărian
[25], A. Avram [2], A. Ahmad & M. Imbad [1], T.L. Hicks [5], K. Iseki [6], T. Kubiak [7], N.
Negoescu [15], D.H. Tan & D.T. Nhan [27].

Some mathematical economics applications are given by H.W. Corley [4], A. Muntean [10]
and J.X. Zhou [28].

In Section 2 we give some basic notions and needed results on strict fixed points in metric
spaces.
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Section 3 is dedicated to the conditions which assure that strict fixed points set of a multi-
valued operator is a nonempty set.

In Section 4 we give some conditions which assure that if strict fixed points set is nonempty
then the fixed points set and strict fixed points set are equal.

Some applications to mathematical economics are given in Section 5.
The aim of this paper is to present some new results on strict fixed points for multivalued

operators on metric spaces and some applications to mathematical economics.

2 Basic notions and needed results on fixed and strict fixed points

Let X be a nonempty set and T : X � X a multivalued operator.

Definition 2.1 An element x ∈ X is

• a fixed point of T iff x ∈ T (x);

• a strict fixed point of T iff T (x) = {x};

• a univalent point of T iff card T (x) = 1.

We denote by FT the fixed points set of T, by (SF )T the strict fixed points set of T
and by UT the univalent points set of T.

Remark 2.2 A strict fixed point of T is a univalent point of T, therefore (SF )T ⊂ UT. The
conversely assertion is not true.

Definition 2.3 A subset A ⊂ X is

• an invariant subset of T iff T (A) ⊂ A

• a fixed subset of T if T (A) = A.

We denote by I(T ) := {A|A ∈ P (X), T (A) ⊂ A} the set of invariant subsets of T and
by F (T ) = {A|A ∈ P (X), T (A) = A} the set of fixed points subset of T.

We have (see [20]):

Theorem 2.4 Let T : X → P (X) a multivalued operator. Then
a) T n(X) is an invariant subset of T, n ∈ N, T n(X) ∈ I(T ).
b) (SF )T is a fixed subset of T, (SF )T ∈ F (T ).

Remark 2.5 For any multivalued operator T, we have FT ⊂ T (FT ).

Remark 2.6 Generally, FT is not an invariant subset of T.
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We give some conditions in which FT is an invariant subset of T, therefore we have
T (FT ) = FT , or FT ∈ F (T ).

Theorem 2.7 Let X be a nonempty set and T : X � X a multivalued operator. If at least
one from the following conditions are satisfied:

a) FT ⊂ UT ;
b) for any A ⊂ X there exists n ∈ N such that T n(A) ⊂ FT ;
c) for any x ∈ X,T (x) ⊂ FT ,
then T (FT ) = FT .

Proof. It is enough to prove that FT ∈ I(T ), that is, FT is an invariant subset of T.
a) If x ∈ FT then x ∈ T (x). But, because FT ⊂ UT it results that x ∈ UT , therefore

card T (x) = 1. Thus T (x) = {x} for any x ∈ FT . It means that FT = (SF )T . Then, from
Lemma 2.1. [11] we have T (FT ) = T ((SF )T ) = (SF )T = FT .

b) For x ∈ T (FT ) there exists y ∈ FT such that x ∈ T (y). Because T (y) ⊂ X there
exists n ∈ N such that T n(T (y)) = T n+1(y) ⊂ FT .

Because y ∈ FT we have y ∈ T (y) therefore x ∈ T (y) ⊂ T (T (y)) = T 2(y). Analogously,
we obtain that x ∈ T n+1(y). Thus x ∈ FT , hence T (FT ) ⊂ FT .

c) For x ∈ T (FT ) there exists y ∈ FT such that x ∈ T (y). But T (y) ⊂ FT , therefore
x ∈ FT , hence T (FT ) ⊂ FT .

The theorem is proved.

Let (X, d) be a metric space. We denote:

P (X) := {Y |∅ �= Y ⊂ X}

Pp(X) := {Y |Y ∈ P (X), Y has the property p},
where p could be: b = bounded, cl = closed, cp = compact, ... .
We consider, in what follows, the following functionals:

D : P (X)× P (X) → R+, D(Y, Z) := inf{d(y, z)|y ∈ Y, z ∈ Z}

δ : P (X)× P (X) → R+ ∪ {+∞}, δ(Y, Z) := sup{d(y, z)|y ∈ Y, z ∈ Z}

ρ : P (X)× P (X) → R+ ∪ {+∞}, ρ(Y, Z) := sup{D(y, Z)|y ∈ Y }

H : P (X)× P (X) → R+ ∪ {+∞}, H(Y, Z) := sup{ρ(Y, Z), ρ(Z, Y )}
For the basic properties of these functionals see [22] and [10].
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Theorem 2.8 Let (X, d) be a complete metric space, T : X → Pb(X) and ϕ : R5
+ → R+.

We suppose that:
i) r, s ∈ R5

+, r ≤ s implies ϕ(r) ≤ ϕ(s);
ii) ϕ(u, u, u, u, u) < u, for all u ∈ R, u > 0;
iii) for all x, y ∈ X,

δ(T (x), T (y)) ≤ ϕ(d(x, y), δ(x, T (x)), δ(y, T (y)), δ(x, T (y)), δ(y, T (x))).

Then FT = (SF )T .

Proof. We have (SF )T ⊂ FT .
If FT = ∅ then (SF )T = ∅ and so FT = (SF )T .
Let now FT �= ∅ and let x ∈ FT . With this x, and y = x in iii), we have

δ(x, x) = δ(T (x), T (x)) ≤ ϕ(d(x, x), δ(x, T (x)), δ(x, T (x)), δ(x, T (x)), δ(x, T (x))) ≤

≤ ϕ(δ(x, T (x)), δ(x, T (x)), δ(x, T (x)), δ(x, T (x)), δ(x, T (x))) < δ(x, T (x)),

if δ(x, T (x)) > 0, that is impossible.
Therefore δ(x, T (x)) = 0, that is T (x) = {x}. Thus x ∈ (SF )T and FT ⊂ (SF )T . We

obtain that FT = (SF )T .
The theorem is proved.

Theorem 2.9 ([23]) Let (X, d) be a complete metric space, T : X → Pb(X) and ϕ : R5
+ →

R+. We suppose that:
i) r, s ∈ R5

+, r ≤ s implies ϕ(r) ≤ ϕ(s);
ii) there exists p > 1 such that ϕ(u, pu, pu, u, u) < u, for all u ∈ R, u > 0;
iii) u− ϕ(u, pu, pu, u, u) → +∞ as u→ +∞;
iv) ϕ is continuous;
v) for all x, y ∈ X,

δ(T (x), T (y)) ≤ ϕ(d(x, y), δ(x, T (x)), δ(y, T (y)), D(x, T (y)), D(y, T (x))).

Then FT = (SF )T = {x∗}.

Proof. Let p > 1. By Lemma 8.1.3 in [22] there exists a selection t of T such that
δ(x, T (x)) ≤ p d(x, t(x)) for all x ∈ X. From condition v) it follows that

d(t(x), t(y)) ≤ ϕ(d(x, y), δ(x, t(x)), δ(y, t(y)), d(x, t(y)), d(y, t(x))).
This means that the selection operator t is a ϕ−contraction, such that there exists a

unique fixed point x∗ for t. So FT �= ∅. Let x ∈ FT . If we take y = x in v), it results
that

δ(T (x)) = δ(T (x), T (x)) ≤ ϕ(0, δ(x, T (x)), δ(x, T (x)), 0, 0) ≤

114 volume 2 (2009), number 2



Aplimat - Journal of Applied Mathematics

≤ ϕ(δ(T (x)), pδ(T (x)), pδ(T (x)), δ(T (x)), δ(T (x))) < δ(T (x))

if δ(T (x)) > 0, that is impossible. So, we have δ(T (x)) = 0, that is T (x) = {x}, hence
FT = (SF )T �= ∅.

The uniqueness of the strict fixed point follows from v).
The theorem is proved.

3 Strict fixed point set of a multivalued operator

Let (X, d) be a complete metric space and T : X → Pb(X) a multivalued operator.

Theorem 3.1 If the following conditions are satisfied

• i) for all x ∈ X, x ∈ T (x);

ii) there exists a comparison function ϕ : R+ → R+ and a Picard sequence (xn)x∈N ,
xn+1 ∈ T (xn), n ∈ N, such that

δ(T (xn+1)) ≤ ϕ(δ(T (xn))), n ∈ N,

then there exists x∗ ∈ X such that xn → x∗ as n→ +∞, and x∗ ∈ (SF )T �= ∅.

Proof. From condition ii) it follows that

δ(T (xn)) ≤ ϕn(δ(T (x0))) → 0 as n→ +∞.

This implies that (xn)x∈N is a Cauchy sequence. So, (xn)x∈N converges. Let x∗ ∈ X
be the limit of this sequence. From i) we have x∗ ∈ T (x∗) �= ∅, and from δ(T (x∗)) = 0 it
results that x∗ ∈ (SF )T �= ∅.

The theorem is proved.

Remark 3.2 If we take ϕ(t) = at, 0 ≤ a < 1, then we obtain a result given by H.W. Corley
in [4].

Theorem 3.3 Let (X, d) be a complete metric space, T : X → Pcl(X) a continuous operator
and ϕ : R3

+ → R+ a function. We suppose that the following conditions are satisfied:
i) r, s ∈ R3

+, r ≤ s implies ϕ(r) ≤ ϕ(s);
ii) ϕ(u, u, u) ≤ u, for all u ∈ R, u > 0;
iii) for all x, y ∈ X, x �= y,

δ2(T (x), T 2(y)) < ϕ(d2(x, y), H(x, T (x)) ·H(y, T 2(y)), D(x, T 2(y)) ·D(y, T (x))).

Then there exists x∗ ∈ X such that x∗ ∈ (SF )T �= ∅ or x∗ ∈ (SF )T 2 �= ∅.
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Proof. Because T is a continuous operator we can define the continuous functional
f : X → R+, f(x) = H(x, T (x)). It follows that f takes its minimum value on X, hence
there exists x0 ∈ X such that f(xo) = inf{f(x)|x ∈ X}. We prove that x0 is a fixed point
of T or some x1 ∈ T (x0) is a fixed point of T 2. We choose

x1 ∈ T (x0) such that d(x0, x1) = H(x0, T (x0)),

x2 ∈ T (x1) such that d(x1, x2) = H(x1, T
2(x1)),

x3 ∈ T (x2) such that d(x2, x3) = H(x2, T (x2)).

We shall prove that H(x0, T (x0)) = 0 or H(x1, T
2(x1)) = 0, that is T (x0) = {x0} or

T 2(x1) = {x1}.
Suppose that H(x0, T (x0)) > 0 and H(x1, T

2(x1)) > 0.
By using iii), we obtain

d2(x1, x2) ≤ H2(T (x0), T
2(x1)) <

< ϕ(d2(x0, x1), H(x0, T (x0)) ·H(x1, T
2(x1)), D(x0, T

2(x1)) ·D(x1, T (x0))) =

= ϕ(d2(x0, x1), d(x0, x1) · d(x1, x2), 0) ≤ max{d2(x0, x1), d(x0, x1) · d(x1, x2), 0}.

If d2(x1, x2) < d
2(x0, x1) it follows that d(x1, x2) < d(x0, x1).

If d2(x1, x2) < d(x0, x1) · d(x1, x2), how d(x1, x2) = H(x1, T
2(x1)) > 0, it follows that

d(x1, x2) < d(x0, x1), the same inequality as before.
Then, we have

d2(x2, x3) ≤ H2(T (x2), T
2(x1)) <

< ϕ(d2(x1, x2), H(x2, T (x2)) ·H(x1, T
2(x1)), D(x2, T

2(x2)) ·D(x1, T (x2))) =

= ϕ(d2(x1, x2), d(x2, x3) · d(x1, x2), 0) ≤ max{d2(x1, x2), d(x2, x3) · d(x1, x2), 0}.

Similarly, it follows that
d2(x2, x3) < d

2(x1, x2), such that d(x2, x3) < d(x1, x2), or d2(x2, x3) < d(x2, x3)·d(x1, x2).
In the second situation, if d(x2, x3) = 0 we obtain a contradiction, such that we must

have the same inequality d(x2, x3) < d(x1, x2).
Therefore, we deduce successively that

H(x2, T (x2)) = d(x2, x3) < d(x1, x2) < d(x0, x1) = H(x0, T (x0)) = f(x0)

which contradicts the minimality of f(x0).
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So, we must have H(x0, T (x0)) = 0, that is T (x0) = {x0}, or H(x1, T
2(x1)) = 0, that

is T 2(x1) = {x1}.
The proof is complete.

Remark 3.4 A similar result can be obtained in the case when ϕ : R3
+ → R+ , ϕ(t1, t2, t3) =

max{t1, t2, t3}. This result was given by N. Negoescu in [15].

4 The case when the fixed set and the strict fixed point set are equal

Theorem 4.1 Let (X, d) be a complete metric space and T : X → P (X) a (δ, ϕ)−contraction.
Then there exists x∗ ∈ X such that

FT = (SF )T = {x∗}.

Proof. The operator T is a (δ, ϕ)−contraction. This means that there exists a comparison
function ϕ : R+ → R+ such that

δ(T (Y )) ≤ ϕ(δ(Y )), for all Y ∈ I(T ).

Let be the following sequence of sets, defined by

X1 := T (X), ..., Xn+1 := T (Xn), n ∈ N∗, X0 := X.

This sequence has the following properties:

a) X ⊃ X1 ⊃ ... ⊃ Xn ⊃ ...

b) Xn ∈ Pb,cl(X) and Xn ∈ I(T )

c) δ(Xn) ≤ ϕ(δ(X)) → 0, as n→ +∞.
We denote by X∞ := ∩n∈NXn.
From a), b), c) we have that X∞ ∈ I(T ) and δ(X∞) = 0.
Because T (X∞) ∈ P (X) it follows that T (X∞) �= ∅.
Hence there exists x∗ ∈ X such that X∞ = {x∗} and x∗ ∈ (SF )T .
But, on the other hand, FT ⊂ ∩n∈NXn = X∞.
These imply that FT = (SF )T = {x∗}.
The theorem is proved.

Remark 4.2 If (X, d) is a bounded complete metric space then the Theorem 4.1 implies the
Theorem 3.1.
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Theorem 4.3 Let (X, d) be a complete metric space, T : X → Pb,cl(X) an operator and
ϕ : R3

+ → R+ a continuous function. We suppose that the following conditions hold:
i) r, s ∈ R3

+, r ≤ s implies ϕ(r) ≤ ϕ(s);
ii) ϕ(u, αu, βu) < u, for all u ∈ R+, where α, β ∈ {0, 1, 2} and α+ β = 2;
iii) for all x, y ∈ X

δ(T 2(x), T 2(y)) < ϕ(D(T (x), T (y)), D(T (y), T 2(x)), D(T (x), T 2(y)));

iv) T is u.s.c. on X.
Then there exists x∗ ∈ X such that

FT = (SF )T = {x∗}.

Proof. Let x0 ∈ X be. We consider the sequence (xn)n∈N obtained as follows:
xn+1 ∈ T (xn) such that d(xn, xn+1) = δ(xn, T (xn)) := bn.

This real sequence (bn)n∈N is decreasing. Indeed, for n ≥ 2, we have

bn = δ(xn, T (xn)) ≤ δ(T 2(xn−1), T
2(xn−2)) ≤

≤ ϕ(D(T (xn−1), T (xn−2)), D(T (xn−2), T
2(xn−1)), D(T (xn−1), T

2(xn−2))) ≤

≤ ϕ(d(xn, xn−1), d(xn, xn+1), d(xn, xn)) ≤ ϕ(bn−1, bn−1 + bn, 0).

If bn > bn−1, then we get a contradiction,
bn ≤ ϕ(bn, 2bn, 0) < bn.

So, bn ≤ bn−1, n ≥ 2.
Let us prove that bn → 0 as n→ +∞.
If ψ : R+ → R+ is defined by ψ(t) := ϕ(t, αt, βt), where α, β ∈ {0, 1, 2} and α+ β = 2,

then the function ψ is increasing and satisfies the condition ψ(t) < t, for all t > 0.
Inductively, we can prove that the relationships

bn ≤ ψn−1(b1), n > 1

hold.
Thus bn → 0 as n→ +∞. Easily, it results that (xn)n∈N is a Cauchy sequence in the

complete metric space (X, d). Let x∗ be the limit of this sequence.
The operator T is u.s.c. with closed and bounded values, such that T is a closed operator

on X.
We have δ(x∗, T (x∗)) = 0 and δ(x∗, T 2(x∗)) = 0. So T (x∗) = {x∗}, T 2(x∗) = {x∗}, that

is T (x∗) = T 2(x∗) = {x∗}, or (SF )T ∩ (SF )T 2 �= ∅.
The uniqueness of common strict fixed point of T and T 2 results easily.
We suppose that there exists y∗ ∈ (SF )T ∩ (SF )T 2 , such that x∗ �= y∗. Then

d(x∗, y∗) = δ(T 2(x∗), T 2(y∗)) ≤ ϕ(d(x∗, y∗), d(x∗, y∗), d(x∗, y∗)) < d(x∗, y∗)
which is a contradiction. It follows that (SF )T ∩ (SF )T 2 = {x∗}.
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Let us prove that FT ∩ FT 2 = (SF )T ∩ (SF )T 2 .
Suppose that there exists y∗ ∈ FT ∩ FT 2 such that x∗ �= y∗.
Then, we have y∗ ∈ FT 2 and therefore

d(x∗, y∗) ≤ δ(T 2(x∗), T 2(y∗)) ≤

≤ ϕ(D(T (x∗), T (y∗)), D(T (y∗), T 2(x∗)), D(T (x∗), T 2(y∗))) =

= ϕ(D(x∗, T (y∗)), D(x∗, T (y∗)), d(x∗, y∗)) ≤

≤ ϕ(d(x∗, y∗), d(x∗, y∗), d(x∗, y∗)) < d(x∗, y∗),
that is a contradiction. This means that y∗ = x∗ ∈ (SF )T ∩(SF )T 2 , and hence FT ∩FT 2 =

(SF )T ∩ (SF )T 2 = {x∗} = FT = (SF )T .
The theorem is proved.

5 Some applications to mathematical economics

The consumer’s problem can be modellated in terms of strict fixed points of a multivalued
operator.

We will adopt the classical line of the theory of J. von Neumann, K. Arrow and G. Debreu
for abstract economies.

Definition 5.1 Let Œ be an abstract economy with m consumers and n commodities.
Then, by definition:

i) the consumer’s set is I = {1, 2, ...,m},
ii) the commodity space is Rn,
iii) the consumption set (the possible consumption set or the choice set) for each con-

sumer i ∈ I, is a set Yi ⊂ Rn,
iv) a possible consumption vector for the consumer i (the ith consumer’s demand)

is an n−dimensional vector xi ∈ Yi,
v) the prices’ simplex (the set of admissible prices) is

σn := {p|p ∈ Rn,

n∑
k=1

pk = 1, pk > 0}.

Definition 5.2 For each consumer i ∈ I we define:
i) the budget set Bi(p) := {xi|xi ∈ Yi, p · xi ≤ 1},
ii) the choosing multivalued operator (the preference operator)

Ui : Yi � Yi, Ui(xi) := {yi|yi ∈ Yi, yi � xi}

iii) the optimal preference is a consumption vector x∗i ∈ Yi satisfying the condition
Ui(x

∗
i ) = {x∗i }.
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Definition 5.3 The consumer’s problem consists in the choice of a consumption vector
x∗i ∈ Bi(p) such that to have x∗i � xi, for all xi ∈ Bi(p). So, a consumption vector x∗i is
chosen as the ”optimal” variant by the consumer, if Ui(x

∗
i ) = {x∗i }.

Definition 5.4 Let Y be a topological vector space. A set C ∈ P (Y ) is called cone iff

for all x ∈ C, and 0 < λ ∈ R it results λ · x ∈ C.

Definition 5.5 A cone C ⊂ Y is
i) a convex cone if it is a convex set;
ii) a pointed cone if C ∩ (−C) = ∅;
iii) an acute cone if C is a pointed cone.

The following result holds

Theorem 5.6 ([10]) Let Yi ∈ P (Rn), C ⊂ Rn be an acute convex cone and Ui : Yi → P (Yi)
the preference operator. We suppose that:

i) Yi is a C-semicompact set;
ii) for all xi ∈ Yi, the upper contur set Ui(xi) is a C-semicompact set.
Then the consumer’s problem has at least one solution, that is, there exists x∗i ∈ Bi(p)

such that Ui(x
∗
i ) = {x∗i }.

Definition 5.7 An abstract economy (or a generalized game) is defined as a family of
ordered triples Γ = (Yi, Fi, Ui)i∈I where Yi is a choice set (a nonempty topological vector
space), Fi : Y � Yi, Y :=

∏
i∈I

Yi, are constraint multivalued operator and Ui is the

preference operator. An equilibrium choice for Γ (of Schafer-Sonnenschein type) is a
point x∗ ∈ Y such that for each i ∈ I, x∗i ∈ cl Fi(x

∗) and Ui(x
∗) ∩ Fi(x

∗) = ∅.

Theorem 5.8 Let Γ = (Yi, Fi, Ui)i∈I be an abstract economy such that for each i ∈ I,
1) Yi is a nonempty compact convex subset of a metrisable locally convex Hausdorff topo-

logical vector space,
2) for each x ∈ Y, Fi(x) is a nonempty convex subset of Yi,
3) the multivalued operator cl Fi : Y � Yi is continuous,
4) the multivalued operator Ui is Θ−majorised.
Then the abstract economy Γ has an equilibrium choice x∗ ∈ Y, that is, for each i ∈ I,

x∗i ∈ cl Fi(x
∗) and Ui(x

∗) ∩ Fi(x
∗) = ∅.

Proof. Let i ∈ I be fixed. Since Ui is Θ−majorised, for each x ∈ Y, there exists
a multivalued operator φx : Y � Yi and an open neighborhood Nx of x in Y such
that Ui(z) ⊂ φx(z) and zi /∈ cl co φx(z) for each z ∈ Nx , and φx|Nx has an open graph
in Nx × Yi . By compactness of Y, the family {Nx|x ∈ Y } is an open cover of Y which
contains a finite subcover {Nxj

|j ∈ J}, where J is a finite set , J ⊂ N. For each j ∈ J, we
now define φj : Y � Yi by φj(z) = φxj

(z) if z ∈ Nxj
, respectively φj(z) = Yi if z /∈ Nxj

,
and next we define Φi : Y � Yi by Φi(z) = ∩j∈Jφj(z). For each z ∈ Y, there exists k ∈ J
such that z ∈ Nxk

and so that zi /∈ cl co φxk
(z) . Thus zi /∈ cl co Φi(z).
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We now show that the graph of Φi is open in Y ×Yi. For each (z, x) ∈ graph of Φi, since
Y = ∪j∈JNxj

, there exists {i1, ..., ik} ⊂ J such that z ∈ Nxi1
∩ ...∩Nxik

. Then we can find an
open neighborhood N of z in Y such that N ⊂ Nxi1

∩ ...∩Nxik
. Since φxi1

(z)∩ ...∩φxik
(z)

is an open subset of Yi containing x, there exists an open neighborhood V of x in Yi

such that x ∈ V ⊂ φxi1
(z)∩ ...∩φxik

(z). Therefore we have an open neighborhood N ×V of
(z, x) such that N × V ⊂ graph of Φi, so that the graph of Φi is open in Y × Yi. And it
is clear that Ui(z) ⊂ Φi(z) for each z ∈ Y.

Next, since Y×Yi is compact and metrisable, so it is perfectly normal. Since the graph of Φi

is open in Y ×Yi, by a result of Dugundji, there exists a continuous function Ci : Y ×Yi → [0, 1]
such that Ci(x, y) = 0 for all (x, y) /∈ graph of Φi and Ci(x, y) �= 0 for all (x, y) ∈ graph
of Φi. For each i ∈ I we define the multivalued operator Gi : Y � Yi by

Gi(x) = {y|y ∈ cl Fi(x), Ci(x, y) = max
z∈cl Fi(x)

Ci(x, z)}.

Then by a result of Aubin and Ekeland, Gi is upper semicontinuous and for each x ∈ Y ,
Gi(x) is nonempty closed subset of Yi. Then the multivalued operator G : Y � Y defined
by G(x) =

∏
i∈I

Gi(x) is also upper semicontinuous, by a result of Fan, and G(x) is a nonempty

compact subset of Y, for each x ∈ Y . Therefore, by the Corollary 3.1. [13], there exists a
point x∗ ∈ Y such that x∗ ∈ cl co G(x∗), that is, x∗ ∈ cl co G(x∗) ⊂

∏
i∈I

cl co Gi(x
∗). Since

Gi(x
∗) ⊂ cl Fi(x

∗) and Fi(x
∗) is convex, cl co Gi(x

∗) ⊂ cl Fi(x
∗). Therefore x∗i ∈ cl Fi(x

∗)
for each i ∈ I. It remains to show that Ui(x

∗)∩Fi(x
∗) = ∅. If zi ∈ Ui(x

∗)∩Fi(x
∗) �= ∅, then

Ci(x
∗, zi) > 0 so that Ci(x

∗, z′i) > 0 for all z′i ∈ Fi(x
∗). This implies that Fi(x

∗) ⊂ Φi(x
∗),

which implies x∗i ∈ cl co Fi(x
∗) ⊂ cl co Φi(x

∗); this is a contradiction. So, the theorem is
proved.
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[13] MUREŞAN, A.S., Non-cooperative games, Ed. Mediamira, Cluj-Napoca, 2003

[14] NEGOESCU, N., Observations sur des paires d’applications multivoques d’un certain type
de contractivite, Bul. Inst. Polit. Iaşi, 35(1989), 21-25
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A FREDHOLM INTEGRAL EQUATION
WITH LINEAR MODIFICATION OF THE ARGUMENT

MURESAN Viorica, (RO)

Abstract. In this paper we give existence and uniqueness results for the solution of a
Fredholm integral equation with linear modification of the argument, in Banach space.
We use Picard and weakly Picard operators’ technique (see I.A.Rus [22]-[25]).

Key words and phrases. functional-integral equations, Picard operators, weakly Picard
operators
Mathematics Subject Classification. 34K15, 34G20, 45N05, 47H10

1 Introduction

The theory of integral equations is an active field in mathematics. Many problems arising in nat-
ural and social sciences such as physics, mechanics, astronomy, chemistry, biology, economics,
engineering lead to mathematical models described by functional integral equations. The the-
ory of functional integral equations has developed very much. Many monographs appeared:
Bellman and Cooke [2] (1963), Halanay [10] (1965), Elsgoltz and Norkin [5] (1971), Bernfeld
and Lakshmikantham [3] (1974), Hale [9] (1977), Lakshmikantham [13] (1984), Azhelev, Maksi-
mov and Rahmatulina [1] (1991), Hale and Verdyn Lunel [9] (1993), Guo and Lakshmikantham
[7] (1996) such as a large number of papers. We quote here [11], [12], [18], [26], [27].

Let (X, || · ||) be a Banach space. Consider the following Fredholm integral equation:

x(t) = g(t, x(t), x(λt), x(0)) +

∫ b

0

K(t, s, x(s), x(λs))ds, t ∈ [0, b], 0 < λ < 1, (1.1)

where g ∈ C([0, b]×X3, X) and K ∈ C([0, b]× [0, b]×X2, X).
By using Picard and weakly Picard operators’ technique we obtain existence and uniqueness

results for the solution of the above equation and also comparison results.
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2 Needed results from Picard operators theory

Let (X, d) be a metric space and A : X → X an operator. We denote
P (X) := {Y ⊆ X|Y �= ∅}; I(A) = {Y ∈ P (X)|A(Y ) ⊆ Y };
FA := {x ∈ X|A(x) = x} - the fixed point set of A;
A0 := 1X , A

1 := A,An+1 := A ◦ An, n ∈ N.

Definition 2.1 (Rus [23]) A is a Picard operator if there exists x∗ ∈ X such that:

(i) FA = {x∗};

(ii) the sequence (An(x0))n∈N converges to x∗, for all x0 ∈ X.

Definition 2.2 (Rus [22], [24]) A is a weakly Picard operator if the sequence (An(x0))n∈N

converges for all x0 ∈ X and its limit (which may depend on x0) is a fixed point of A.
If A is a weakly Picard operator then we consider the operator A∞ : X → X defined by

A∞(x) = lim
n→∞

An(x), x ∈ X.

We have that A∞(X) = FA.

Remark 2.3 If A is a weakly Picard operator and FA = {x∗}, then A is a Picard operator.

Let (X, d,≤) be an ordered metric space and A : X → X an operator.
We have:

Lemma 2.4 (Rus [24]) If the operator A is increasing and A is a weakly Picard operator, then
A∞ is increasing.

Lemma 2.5 (Comparison abstract lemma) (Rus [24]). Let A,B,C : X → X three operators
such that:

(i) A,B,C are weakly Picard operators;

(ii) B is an increasing operator;

(iii) A ≤ B ≤ C.

Then x ≤ y ≤ z implies A(x) ≤ B(y) ≤ C(z).

Lemma 2.6 (Abstract Gronwall lemma) (Rus [24]) If the operator A is an increasing operator
and A is a Picard operator with FA = {x∗}, then

(a) x ≤ A(x) implies x ≤ x∗;

(b) x ≥ A(x) implies x ≥ x∗.
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3 Main results

Let (X, || · ||,≤) be an ordered Banach space and (C([0, b], X), || · ||C), where
||x||C = max

t∈[0,b]
||x(t)||. Consider the equation (1.1) and we suppose that:

(i) g ∈ C([0, b]×X3, X), K ∈ C([0, b]× [0, b]×X2, X);

(ii) K(0, s, u, v) = 0, for all s ∈ [0, b] and all u, v ∈ X.

Let Sg = {α ∈ X|g(0, α, α, α) = α} be. We denote Xα := {x ∈ C([0, b], X)|x(0) = α}. It
is clear that C([0, b], X) = ∪

α∈X
Xα is a partition of C([0, b], X) and Xα ∈ I(A) if and only if

α ∈ Sg.
Consider the operator A : C([0, b], X) → C([0, b], X) defined by

A(x)(t) := g(t, x(t), x(λt), x(0)) +

∫ b

0

K(t, s, x(s), x(λs))ds, t ∈ [0, b], 0 < λ < 1 (3.1)

We have

Theorem 3.1 (Theorem 3.1, [16]) We suppose that the previous conditions (i) and (ii) are
satisfied and

(iii) Sg �= ∅

(iv) there exists LK > 0, such that

||K(t, s, u1, v1)−K(t, s, u2, v2)|| ≤ LK(||u1 − u2||+ ||v1 − v2||),

for all t, s ∈ [0, b] and all ui, vi ∈ X, i = 1, 2;

(v) there exists 0 < Lg <
1
2

such that

||g(t, u1, u2, α)− g(t, v1, v2, α)|| ≤ Lg(||u1 − v1||+ ||u2 − v2||),

for all t ∈ [0, b] and all ui, vi, α ∈ X, i = 1, 2.

Then

A| ∪
α∈Sg

Xα : ∪
α∈Sg

Xα → ∪
α∈Sg

Xα,

is a weakly Picard operator.

Corollary 3.2 Card FA = Card Sg.

Theorem 3.3 We suppose that (i) and (ii) are satisfied and

(iii) Sg = {α∗};
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(iv) there exists LK > 0 such that

||K(t, s, u1, v1)−K(t, s, u2, v2)|| ≤ LK(||u1 − u2||+ ||v1 − v2||),
for all t, s ∈ [0, b] and all ui, vi ∈ X, i = 1, 2;

(v) there exists Lg > 0 such that

||g(t, u1, v1, α)− g(t, u2, v2, α)|| ≤ Lg(||u1 − u2||+ ||v1 − v2||),
for all t ∈ [0, b], and all ui, vi, α ∈ X, i = 1, 2;

(vi) Lg + Lkb <
1
2
.

Then the equation (1.1) has a unique solution x∗ in C([0, b], X).

Proof. Consider Xα∗ = {x ∈ C([0, b], X)|x(0) = α∗} and A∗ = A|Xα∗ .
We have
||Aα∗(x)(t)−Aα∗(z)(t)|| ≤ ||g(t, x(t), x(λt), α∗)−g(t, z(t), z(λt), α∗)||+

∫ b

0
||K(t, s, x(s), x(λs))−

K(t, s, z(s), z(λs))||ds ≤ Lg(||x(t)−z(t)||+ ||x(λt)−z(λt)||)+2LKb||x−z||c ≤ 2(Lg +LKb)||x−
z||c.
It follows that

||Aα∗(x)− Aα∗(z)||C ≤ 2(Lg + LKb)||x− z||C .
Because of (vi), the operator Aα∗ is a contraction. So, A∗ is a Picard operator.

Theorem 3.4 We suppose that all the conditions in Theorem 3.2. are satisfied and x∗ is
the unique solution of (1.1) and in addition we suppose that K(t, s, ·, ·, ·) and g(t, ·, ·, α∗) are
increasing, for all t, s ∈ [0, b]. In these conditions, if x is a subsolution of (1.1), then x ≤ x∗.

Proof. We apply Lemma 2.3.

Consider the equations:

x(t) = gi(t, x(t), x(λt), x(0)) +

∫ b

0

Ki(t, s, x(s), x(λs))ds, t ∈ [0, b], 0 < λ < 1, (3.2)i

where i = 1, 2, 3.
We have

Theorem 3.5 We suppose that for (3.2)i, i = 1, 2, 3 the corresponding conditions of Theorem
3.2 are satisfied and let x∗i be, i = 1, 2, 3 the corresponding solution for each equation. If, in
addition, Sg1 = Sg2 = Sg3 = {α∗} and we suppose that K2(t, s, ·, ·, ·) and g2(t, ·, ·, α∗) are
increasing for all t, s ∈ [0, b] and K1 ≤ K2 ≤ K3, g1 ≤ g2 ≤ g3, then x∗1 ≤ x∗2 ≤ x∗3.

Proof. Consider the corresponding operators Ai, i = 1, 2, 3, defined by

Ai(x)(t) := gi(t, x(t), x(λt), x(0)) +

∫ b

0

Ki(t, s, x(s), x(λs))ds, t ∈ [0, b], 0 < λ < 1.

The operator A2 is an increasing operator, A1, A2, A3 are Picard operators and
A1 ≤ A2 ≤ A3. By Lemma 2.2 it follows that x∗1 ≤ x∗2 ≤ x∗3.
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4 Numerical examples

Example 4.1 Consider the following equation:

x(t) = t+
1

200
x(t)+

1

160
x(
t

2
)+791+

∫ 3

0

t(t+s+
1

45
cos(x(s))+

1

60
sin(x(

s

2
)))ds, t ∈ [0, 3] (4.1)

In this case X := R, b := 3, λ :=
1

2
, g(t, u, v, β) := t +

1

200
u+

1

160
v + 791, K(t, s, u, v) :=

t(t+ s+
1

45
cosu+

1

60
sin v), Lg :=

1

160
, LK :=

1

15
, b := 3, α∗ := 800.

We have

Theorem 4.2 The equation (4.1) has a unique solution in C[0, 3].

Example 4.3 Consider the equation

x(t) = 2t2 +
1

5
sin x(t) +

1

5
x(
t

4
) +

4

5
x(0)− 1

5
+ (4.2)

+
∫ 5

0
t(t+ s+

1

150
cos x(s) +

1

100
sin(x(

s

4
)))ds, t ∈ [0, 5]

Here X := R, b := 5, λ := 1
4
, g(t, u, v, β) := 2t2 + 1

5
sinu + 1

5
v + 4

5
β − 1

5
, K(t, s, u, v) :=

t(t+ s+
1

150
cosu+

1

100
sin v), Lg :=

1

5
, LK :=

1

20
, b := 5.

For (4.2) the equation α = g(0, α, α, α) becomes sinα = 1. By using Theorem 3.1 we obtain:

Theorem 4.4 The equation (4.2) has solutions in C[0, 5].

Example 4.5 Consider the equation
x(t) = t+ 2

3
cos x(t) + 1

3
x( t

3
) + 2

3
x(0)− 2 +

∫ 2

0
t(t+ s+ 1

8
cos(x(s)) + 1

24
sin(x( s

3
)))ds, t ∈ [0, 2]

In this case X := R, b := 2, λ := 1
3
, g(t, u, v, β) := t+ 2

3
cosu+ 1

3
v + 2

3
β − 2, K(t, s, u, v) :=

t(t+ s+ 1
8
cosu+ 1

24
sin v), Lg := 2

3
, LK := 1

4
.

By considering g(0, α, α, α) = α we obtain cosα = 3 and Sg = ∅.

So, for this equation we can’t apply the previous results.

Remark 4.6 In the papers [16] and [17] we have considered some Volterra integral equations
and we applied the weakly Picard operators technique to obtain existence and data dependence
results for the solutions of those equations.
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ON ASYMPTOTIC BEHAVIOUR
OF THE NONLINEAR VISCOELASTIC

MINDLIN-TIMOSHENKO THIN PLATE MODEL

PANCZA Dávid, (SK)

Abstract.The oscillation of a thin viscoelastic plate is described by a time dependent
vector function. Under a constant load of forces the oscillation has to relax to a final
constant state. If the mathematical model of the thin plate is correct, the convergence
of the force function to a constant must imply a convergence of the state function to
a stationary vector. In our paper we are testing the relaxing of a nonlinear Mindlin-
Timoshenko thin plate model.

Key words and phrases. Mindlin-Timoshenko thin plate model, viscoelasticity, material
function, asymptotic behaviour.

Mathematics Subject Classification.Primary 74D10; Secondary 35Q72.

1 Introduction

The formulation of the viscoelastic Mindlin-Timoshenko (MT) thin plate model consists of three
differential equations (Lagnese – Lions, 1989) with additional convolution terms. In the case
of larger deformations some nonlinearities arise. We shall deal with a simplified model with
nonlinearities only in the third coordinate. Our aim is to test the behaviour of its weak solution
for t → ∞. Convergence of the solution to a stationary vector in the case of a constant load
was already proved for a Kirchhoff model with an exponentially decreasing material function
(I. Bock, 2002). We apply a similar method to our model admitting more general material
functions.
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2 The formulation of the problem

Consider a region Ω ∈ R with a Lipschitz boundary Γ = Γ0 ∪ Γ1, Γ0 �= ∅. We introduce the
following Sobolev spaces and norms:

W 1,p(Ω) = {v ∈ Lp(Ω); ∂αv ∈ Lp(Ω), α = 1, 2, p > 1}

‖v‖1,p =

[∫∫
Ω

vp + (∂1v)
p + (∂2v)

p dx

]1/p

,

and
W 1,p

Γ0
(Ω) =

{
v ∈ W 1,p(Ω); v = 0 on Γ0

}
,

‖v‖1,p,0 =

[∫∫
Ω

(∂1v)
p + (∂2v)

p dx

]1/p

.

The partial derivatives are considered in the sense of distributions and the boundary con-
dition in the sense of traces in the space W 1,p(Ω). Moreover we denote

W = (W 1,2
Γ0

(Ω))3, ‖y‖W =
3∑

i=1

‖yi‖1,2,0,

V = (W 1,2
Γ0

(Ω))2 ×W 1,4
Γ0

(Ω), ‖y‖V = ‖y1‖1,2,0 + ‖y2‖1,2,0 + ‖y3‖1,4,0.

Let w = (φ1, φ2, w) and v = (ψ1, φ2, v) be vectors from the space W . Consider an operator
A2 : W →W� satisfying the following conditions:

a) 〈A2(w),v〉 is a bilinear form that can be written as a sum

〈A2(w),v〉 =

∫∫
Ω

n∑
i=1

Li(w)Li(v) dx

where Li : W → L2(Ω) are linear operators,
b) there exists a constant c2 > 0 such that

〈A2(w),w〉 ≥ c2
(
‖φ1‖2

1,2,0 + ‖φ2‖2
1,2,0 + ‖w‖2

1,2,0

)
≥ c2

3
‖w‖2

W ,

c) there exists a constant C2 > 0 such that

〈A2(w),v〉 ≤ C2‖w‖W‖v‖W .

For w = (φ1, φ2, w), v = (ψ1, ψ2, w) from the space V we define an operator A4 : V → V�:

〈A4(w),v〉 = 〈A4(w), v〉 =
1

2

∫∫
Ω

(∇w.∇w)(∇w.∇v) dx.
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Finally, let there be given a bounded linear operator F ∈ C1([0,∞),W�):

〈F(t),v〉 ≤ Kf‖v‖W , Kf > 0.

Let D ∈ C1 ([0,∞),R+) be a function with
∫∞

0
|D′(t)|d t ≤Md where Md > 0 is a constant.

Let a > D(0) be a constant too.
The weak formulation of our problem is an operator equation (1) in V� with one boundary

condition (2):

aA2(w) +D′ ∗ A2(w) +A4(w) = F ∀ t ∈ [0,∞), (1)

w = 0 on Γ0. (2)

The system (1-2) has a unique bounded solution w ∈ C([0, T ],V) (Pancza, 2002).
Our aim is to investigate the situation, when F tends to a constant in time. We shall prove

that the solution w of (1-2) asymptotically converges to a constant in time function.

3 Properties of the operators A2, A4

From now on we suppose that for all t ∈ [0,∞) the material function D(t) ∈ C2[0,∞) satisfies
the following conditions with constants β > 0, αi > 0 for i = 1, 3, 5 and αi ≥ 0 for i = 2, 4, 6:

α2e
−βt ≤ D(t) ≤ α1e

−βt, −α3e
−βt ≤ D′(t) ≤ −α4e

−βt, α6e
−βt ≤ D′′(t) ≤ α5e

−βt.

We denote d0 = D(0), d1 = D′(0) and d2 = D′′(0). For t = 0 we get the basic inequalities
that must be satisfied by the constants:

α6 ≤ d2 ≤ α5,
α6

β
≤ α4 ≤ −d1 ≤ α3 ≤

α5

β
,
α4

β
≤ α2 ≤ d0 ≤ α1 ≤

α3

β

Lemma 3.1 Let β > 0, 0 ≤ γ < 2β be constants. We denote

P (t) =

∫ t

0

〈
∫ s

0

e(γ−β)s+βτA2(w(τ))dτ,w(s)〉ds, (3)

li(w) = ‖Li(w)‖L2(Ω), Mi =

∫ t

0

eγsl2i (w)(s)ds , M =
n∑

i=1

Mi.

For all t ∈ [0,∞) holds the estimate

|P | ≤ 2

2β − γM . (4)

Proof. We denote Ni(t) =
∫ t

0

∫ s

0
e(γ−β)s+βτ li (w)(τ) dτ li(w)(s) ds . After applying the Cauchy

– Schwarz inequality on (3) we obtain

|P (t)| ≤
n∑

i=1

Ni(t). (5)
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Using the same inequality once again we have

Ni ≤ Λ
1
2
i M

1
2
i , (6)

where

Λi =

∫ t

0

(
e(

γ
2
−β)s

∫ s

0

eβτ li(w)(τ)dτ

)2

ds .

After integrating by parts the terms Λi we have:

Λi = − eγt

2β − γ

(∫ t

0

eβ(t−τ)li(w)(τ)dτ

)2

+
2

2β − γNi.

Hence we get the estimate

Λi ≤
2

2β − γNi . (7)

From (6), (7) we have Ni ≤ 2
2β−γ
Mi. Applied into (5) we get (4). �

For A4 it holds:
〈A4(w)−A4(y),w − y〉 =

1

2

∫∫
Ω

(∇w.∇w)(∇w.(∇w −∇y)) + (∇y.∇y)(∇y.(∇y −∇w))dx =

=
1

4

∫∫
Ω

(∇w.∇w −∇y.∇y)2 + (∇w.∇w +∇y.∇y)((∇w −∇y).(∇w −∇y))dx.

We define an operator B4:

B4(w, y) =
1

4

∫∫
Ω

1

2
(∇w.∇w −∇y.∇y)2 + (∇w.∇w)(∇(w − y).∇(w − y)) dx . (8)

Lemma 3.2 Let y ∈ V be a function constant in time and y its third coordinate. Then

〈A4(w)−A4(y),w − y〉 ≥ B4(w, y) ≥ 0. (9)

Moreover, if w is a solution of (1-2), it holds:

d

dt

(a
2
〈A2(u),u〉+ B4(w, y)

)
(t) =

〈
d

dt
A(w),w − y

〉
(t) , (10)

where A = aA2 +A4.

Proof. The inequality (9) is obvious. Before the proof of (10) we need an auxiliary estimate.
We denote w = w(t), W = w(t+ η), w = w(t), W = w(t+ η) and

Z(W,w) =
1

4

∫∫
Ω

[(∇W −∇w).(∇W −∇w)][∇W.∇W −∇w.∇w] dx.
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It is not complicated to prove that

Z(W,w) ≤ 〈A4(W )−A4(w),W − w〉. (11)

We subtract the equation (1) in time t from the same equation in time t + η. We apply the
result on v = W −w. Using the properties of A2 we get

〈A4(W )−A4(w),W − w〉 ≤ (12)

≤ 〈F(t+ η)−F(t)−D′ ∗ A2(W −w),W −w〉 .

Applying (12) into (11) and dividing the inequality by η we get for η → 0:

lim
η→0

1

η
Z(W,w) ≤

〈
F ′ − d1A2(w)−D′′ ∗ A2(w), lim

η→0
(W −w)

〉
= 0.

Now we can prove (10). Let u(t) = w(t) − y, U(t) = u(t + η) and let u, U be their third
coordinates. We have

〈A4(W )−A4(w),
1

2
(U + u)〉 =

=
1

4

∫∫
Ω

(∇W.∇W )(∇W.∇U +∇u))− (∇w.∇w)(∇w.∇U +∇u))dx =

=
1

8

∫∫
Ω

Q(∇W +∇w).(∇U +∇u) +R(∇W −∇w)(∇U +∇u)dx,

where
Q = ∇W.∇W −∇w.∇w, R = ∇W.∇W +∇w.∇w.

Using the same notation we can write:

B4(W, y)− B4(w, y) =

=
1

8

∫∫
Ω

2Q(∇W.∇U +∇w.∇u) +R((∇W −∇w).(∇U +∇u))dx.

Comparing the results we see that

B4(W, y)− B4(w, y) =

〈
A4(W )−A4(w),

1

2
(U + u)

〉
+ Z(W,w). (13)

Using (13) and the bilinearity of A2 we get the equation

1

η

(
〈aA2(U) +A4(W )− aA2(u)−A4(w),

1

2
(U + u)〉+ Z(W,w)

)
=

=
1

η

(a
2
(〈A2(U),U〉 − 〈A2(u),u〉) + (B4(W, y)− B4(w, y))

)
. (14)
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For η → 0 the term Z tends to zero and the rest of the terms on the left-hand side define
the first derivative of the operator A(w) applied on u. This derivative can be evaluated if w
is a solution of (1). So the limit of the left-hand side of (14) exists, hence the limit of the
right-hand side must exist too and it holds:

〈 d
dt

(A(w),u〉 =
d

dt
(
a

2
〈A2(u),u〉+ B4(w), y))

�

Lemma 3.3 Let χ ∈ C([0,∞)) and χ(t) → 0 for t→∞. Then for γ > 0 it holds that∫ t

0

e−γ(t−s)χ(s)ds→ 0 .

Proof.Let there be given ε > 0. We set η = εγ
2
. From the suppositions follows:

a)∀η > 0 : ∃tη, ∀t > tη : χ(t) < η,
b)∃M > 0,∀t ∈ [0,∞) : |χ(t)| ≤M .

The integral can be divided in two parts and bounded in the following way:∫ t

0

e−γ(t−s)χ(s)ds ≤ M
∫ tη

0

e−γ(t−s)ds+ η

∫ t

tη

e−γ(t−s)ds ≤

≤ M
γ

(
e−γ(t−tη) − e−γt

)
+ ηγ ≤ M

γ
e−γ(t−tη) +

ε

2
.

The last term is for every t > tε, where

tε = tη +
1

γ
ln

(
2M

εγ

)
,

less than ε, and that proves the lemma.

�

4 The asymptotic behaviour of the model for t→∞ at constant load

We suppose that F ∈ C1 ([0,∞),W�) tends for t→∞ to a constant load F∞, i.e.

lim
t→∞

‖F(t)−F∞‖W� = 0, lim
t→∞

‖F ′(t)‖W� = 0. (15)

Our hypothesis is that the material functionD will relax to zero and the system will converge
to a stationary state, i.e. w(t) → w∞ for t → ∞, where w∞ represents the final state. The
convolution term of the equation must converge to a constant vector∫ t

0

D′(t− τ)A2(w(τ)) dτ → −d0A2(w∞)
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and the original equation (1) to a stationary equation

(a− d0)A2(w) +A4(w) = F∞. (16)

The final state w∞ has to be a solution of the system (16). The problem (16) is in fact the
problem (1) without convolution terms and the existence and uniqueness of its solution can be
proven by the Lax-Milgram theorem (Lagnese-Lions, 1989).

Let us denote w∞ the solution of (16) and u = w −w∞. In order to get an estimate of u
we need to reformulate the original system (1). We carry out the first derivative of (1):

D′′ ∗ A2(w) + d1A2(w) +
d

dt
[aA2(w) +A4(w)] = F ′

and add to it the same equation (1) multiplied by β. We get

(βD′ +D′′) ∗ A2(w) + (d1 + βa)A2(w) + βA4(w) +
d

dt
[aA2(w) +A4(w)] = βF + F ′ (17)

w(0) = A−1(F(0)). (18)

Now we can subtract the equation (16) multiplied by β from (17). We use that it holds:

A2(w) = A2(u) +A2(w∞)

G′ ∗ A2(w)(t) = G′ ∗ A2(u)(t) + (G(t)−G(0))A2(w∞),

where G stands for βD +D′. The result is

(βD′ +D′′)∗A2(u)+(βa+d1)A2(u)+β(A4(w)−A4(w∞))+
d

dt
[aA2(u)+A4(w)] = H , (19)

where H = β(F − F∞) + F ′ − (βD +D′)A2(w∞) .

According to suppositions (15) it holds that H → 0 for t→∞ in the norm of the space W�.
From (19) we are going now to extract an estimate of u in order to prove that u→ 0 in the

norm of an appropriate space. Let us apply the operators of (19) on the vector u and multiply
the whole equation by exp(γt) (the constant γ, 0 < γ < 2β will be determined later). After
carrying out the integration in the time variable t we get an equation

I1 + I2 + I3 =

∫ t

0

〈H,u〉eγsds , (20)

where I1 =

∫ t

0

(βa+ d1)〈A2(u),u〉+ β〈A4(w)−A4(w∞), u〉) eγsds,

I2 =

∫ t

0

(
〈 d
dt

[aA2(w) +A4(w)],u〉
)
eγsds,

I3 =

∫ t

0

〈(βD′ +D′′) ∗ A2(u),u〉eγsds .
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Using (10) I2 can be written in the form

I2 =

∫ t

0

(
d

dt
[
a

2
〈A2(u), u〉+ B4(w, y)]

)
eγsds.

We start with the estimate of I3. From the properties of D it follows that

(−βα3 + α6)e
−βt ≤ (βD′ +D′′)(t) ≤ (−βα4 + α5)e

−βt . (21)

The exponential function on the left-hand side is negative due to (3.2) and that on the
right-hand side is positive. So we can express inequalities (21) in the following way:

|(βD′ +D′′)(t)| < αe−βt, where α = max{βα3 − α6, α5 − βα4}.

Now using lemma 1 we get

|I3| <
2α

2β − γ

∫ t

0

eγs

n∑
i=1

l2i (u) ds. (22)

The estimate of the sum I1 + I3 is possible only at some additional conditions:

Lemma 4.1 Let the constant a satisfy

α

β2
− d1
β
< a . (23)

Then there exist constants θ > 0, γ0 > 0 such that ∀γ: 0 < γ ≤ γ0 it holds:

I1 + I3 ≥ J,

where J =

∫ t

0

(θ〈A2(u),u〉+ β〈A4(w)−A4(w∞), u〉) eγsds .

Proof.Supposing (23) it is possible to find numbers θ > 0, γ0 > 0 such that ∀γ: 0 < γ ≤ γ0 it
holds

θ +
2α

2β − γ ≤ θ +
2α

2β − γ0
< βa+ d1 .

Hence it follows

I1 ≥
∫ t

0

(
(θ +

2α

2β − γ )〈A2(u),u〉+ β〈A4(w)−A4(w∞),u〉
)
eγsds .

Using (4) and (22) we obtain
I1 + I3 ≥ I1 − |I3| ≥ J

Let us continue with the estimate of the term J . We set

γ = min{β, γ0,
2θ

a
} .
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Using (9) we can bound the term containing A4:

J ≥
∫ t

0

γ
(a

2
〈A2(u),u〉+ B4(w,w∞

)
eγsds =: J1.

Now we are able to carry out the integration in t of J1 + I2:

J1 + I2 =
(a

2
〈A2(u),u〉(t) + B4(w,w∞)(t)

)
eγt −K2 −K4, (24)

where K2 = a
2
〈A2(u(0)),u(0)〉 and K4 = B4(w(0),w∞).

According to properties of A2 we can write

J + I2 ≥
ac2
6
‖u‖2

We
γt −K2 −K4 . (25)

Coming back to (20) and introducing there the obtained estimates we get

ac2
6
‖u‖2

W ≤
∫ t

0

‖H‖W� ‖u‖W e−γ(t−s)ds+ (K2 +K4)e
−γt . (26)

The solutions of (1-2) are bounded, so we can a priori bound the unknown vector u = w−w∞
with an appropriate constant Ku. Hence according to lemma 3 it holds for t→∞:

Ku

∫ t

0

‖H‖W� eγ(t−s)ds→ 0,

so ‖u‖W → 0. This implies w → w∞ in the space W .
Using this result we can prove the convergence of the last coordinate u = w − w∞ in the

norm of the space W 1,4
Γ0

. Let us subtract (16) from (1) and apply the result on u:

(a− d0)〈A2(u),u〉+ 〈A4(w)−A4(w∞),u〉 = (27)

= 〈F − F∞,u〉 − 〈d0A2(w)−D′ ∗ A2(w),u〉 .
The solution w is bounded, hence we get

‖〈d0A2(w)‖W � ≤ d0C2Mw ,

‖D′ ∗ A2(w)‖W � ≤ α1C2Mw .

The left-hand side of (27) can be reduced using lemma 3 and we obtain the inequality

‖u‖4
1,4,0 ≤ (‖〈F − F∞‖W � + (d0 + α1)C2Mw) ‖u‖W → 0 .

This implies the convergence of u.

Theorem 4.2 Let D and a satisfy suppositions (1-2), (23). Let F satisfy (15). Then for
t→∞ the solution w of (1-2) converges in the norm of V to a stationary solution w∞ of (16).
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GENERALIZATION OF CERTAIN INTEGRAL INEQUALITIES
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Abstract. In the paper certain integral inequalities are generalized . There are estab-
lished conditions of more precise bounds of these inequalities and results are applied to
investigation of boundedness of solutions of nonlinear integrodifferential equations .
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1 Introduction

Integral inequalities play a significant role in the study of differential, integral and integrodif-
ferential equations (see[1-9]). For example, in the theory of differential and integrodifferential
equations the integral inequalities are used to the study of boundedness and stability of solu-
tions (see [8,9]). In [5] J.A. Oguntuase tried to obtain the generalizations of the Pachpatte’s
inequalities [6] but his proofs and assumptions were incorrect. The aim of the paper is to
correct his results and also obtain a bound of the general version of inequalities in [5].

2 Main results

Theorem 2.1 Suppose that the functions u(t), f(t) ∈ C[I, R+], k(t, s) ∈ C[I×I, R+], kt(t, s) ∈
C[I × I, R−], I = [a, b] , c be a nonnegative constant. If the inequality

u(t) ≤ c+
∫ t

a

f(s)u(s)ds+

∫ t

a

f(s)

(∫ s

a

k(s, τ)u(τ)dτ

)
ds, a ≤ τ ≤ s ≤ t ≤ b (1)
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holds then

u(t) ≤ c
[
1 +

∫ t

a

f(s) exp

(∫ s

a

(f(τ) + k(τ, τ))dτ

)
ds

]
. (2)

Proof. Define a function v(t) by the right hand side of (1) . Then it follows that

u(t) ≤ v(t). (3)

Therefore

v′(t) = f(t)u(t) + f(t)

∫ t

a

k(t, τ)u(τ)dτ ≤ f(t)
(
v(t) +

∫ t

a

k(t, τ)v(τ)dτ

)
. (4)

If we put

m(t) = v(t) +

∫ t

a

k(t, τ)v(τ)dτ, (5)

then it is obvious that v(t) ≤ m(t), m(a) = v(a) = c. Thus

m′(t) = v′(t) + k(t, t)v(t) +

∫ t

a

kt(t, τ)v(τ)dτ ≤ v′(t) + k(t, t)v(t) ≤

f(t)m(t) + k(t, t)v(t) ≤ m(t)(f(t) + k(t, t)m(t). (6)

Integrate (6) from a to t we obtain

m(t) ≤ c exp

(∫ t

a

(f(s) + k(s, s))ds

)
. (7)

Substitute (7) into (4) we get

v′(t) ≤ cf(t) exp

(∫ t

a

(f(s) + k(s, s))ds

)
. (8)

Integrating both sides of (8) from a to t we obtain

v(t) ≤ c
[
1 +

∫ t

a

f(s) exp

(∫ s

a

(f(τ) + k(τ, τ))dτ

)
ds

]
. (9)

By (3) we have the desidered result.

The assumption kt(t, s) ∈ C[I× I, R−] which absents in [5] is necessary for validity of Theorem
2.1.

Remark 2.2 If in Theorem 2.1. we put k(t,s) = g(s) we get the Pachpate’s result [6] .

Now we give more precise and general version of Theorem 2.1.
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Theorem 2.3 Let u(t), f(t), a(t) ∈ C[R+, R+], k(t, s), kt(t, s) ∈ C[G,R+], G = {(t, s) ∈ R2
+ :

0 ≤ s ≤ t <∞} and c be a nonnegative constant.
If

u(t) ≤ c+
∫ t

0

f(s)u(s)ds+

∫ t

a

f(s)

(∫ s

0

k(s, τ)u(τ)dτ

)
ds, (10)

for t ∈ R+ then

u(t) ≤ c
[
1 +

∫ t

0

f(s) exp

(∫ s

0

(f(τ) + A(τ))dτ

)
ds

]
, (11)

for t ∈ R+ where

A(t) = k(t, t) +

∫ t

0

kt(t, s)ds. (12)

If

u(t) ≤ a(t) +

∫ t

0

f(s)u(s)ds+

∫ t

a

f(s)

(∫ s

0

k(s, τ)u(τ)dτ

)
ds, (13)

for t ∈ R+ then

u(t) ≤ a(t) + g(t)

[
1 +

∫ t

0

f(s) exp

(∫ s

0

(f(τ) + A(τ))dτ

)
ds

]
, (14)

for t ∈ R+ where

g(t) =

∫ t

0

f(s)

[
a(s) +

∫ s

0

k(s, τ)a(τ)dτ

]
ds, (15)

A(t) is defined by (12).

Proof. Define a function z(t) by the right hand side of (10). Then z(0) = c, u(t) ≤ z(t) and

z′(t) = f(t)

[
u(t) +

∫ t

0

k(t, τ)u(τ)dτ

]
≤ f(t)

[
z(t) +

∫ t

0

k(t, τ)z(τ)dτ

]
. (16)

Define a function v(t) by

v(t) = z(t) +

∫ t

0

k(t, τ)z(τ)dτ. (17)

Then v(0) = z(0) = c, z(t) ≤ v(t),
z′(t) ≤ f(t)v(t) (18)

and v(t) is nondecreasing in t and

v′(t) = z′(t) + k(t, t)z(t) +

∫ t

0

kt(t, τ)z(τ)dτ

≤ f(t)v(t) + k(t, t)v(t) +

∫ t

0

kt(t, τ)z(τ)dτ

≤ v(t)

[
f(t) + k(t, t) +

∫ t

0

kt(t, τ)dτ

]
= v(t)[f(t) + A(t)].
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Thus

v(t) ≤ c exp

(∫ s

0

[f(τ) + A(τ)]dτ

)
. (19)

Substituting(19) in (18) and integrating the resulting inequality from 0 to t, t ∈ R+ we get

z(t) ≤ c
[
1 +

∫ t

0

f(s) exp

(∫ s

0

[f(τ) + A(τ)]dτ

)
ds

]
(20)

The desidered inequality (11) follows from inequality u(t) ≤ z(t).
Now we prove inequality (14) . Define a function w(t) by

w(t) =

∫ t

0

f(s)

[
u(s) +

∫ s

0

k(s, τ)u(τ)dτ

]
ds. (21)

Then from (13)
u(t) ≤ a(t) + w(t)

and using this in (21) we get

w(t) ≤
∫ t

0

f(s)

[
a(s) + w(s) +

∫ s

0

k(s, τ)(a(τ) + w(τ))dτ

]
ds.

= g(t) +

∫ t

0

f(s)

[
w(s) +

∫ s

0

k(s, τ)w(τ)dτ

]
ds, (22)

where g(t) is defined by (15) . Clearly g(t) is nonnegative, continuous and nondecreasing in t.
First, we assume g(t) > 0 for t ∈ R+. From (22) we have

w(t)

g(t)
≤ 1 +

∫ t

0

f(s)

[
w(s)

g(s)
+

∫ s

0

k(s, τ)
w(τ)

g(τ)
dτ

]
ds.

Now an application of the inequality (10) we get

w(t)

g(t)
≤
[
1 +

∫ t

0

f(s) exp

(∫ s

0

[f(τ) + A(τ)]dτ

)
ds

]
. (23)

The desidered inequality (14) follows from (23) and the fact

u(t) ≤ a(t) + w(t).

If g(t) ≥ 0 we carry out the above procedure with g(t) + ε instead of g(t) where ε > 0 is an
arbitrary small constant and then subsequently pass to the limit as ε→ 0 to obtain (14) .

Now we give an application which is just sufficient to convey the importance of our results.
Consider the nonlinear integrodifferential equation

x′(t) = f(t, x(t)) +

∫ t

a

g(t, s, x(s))ds (24)
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and the corresponding perturbed equation

u′(t) = f(t, u(t)) +

∫ t

a

g(t, s, u(s))ds+ h

(
t, u(t),

∫ t

a

k(t, s, u(s))ds

)
, (25)

where a, t ∈ R+, f ∈ C[R+ × R,R], g, k, h ∈ C[R+ × R+ × R,R]. Let x(t) = x(t, a, x0) and
u(t) = u(t, a, x0) be solutions of (24) and (25) respectively with x(a) = u(a) = x0. Suppose
that fx, gx exist and fx ∈ C[R+×R,R], gx ∈ C[R+×R+×R,R]. Put Φ(t, a, x0) = ∂x

∂x0
(t, a, x0)

then (see[2])we get the following variational equations

z′(t) = fx(t, x(t, a, x0))z(t) +

∫ t

a

gx(t, s, x(s, a, x0))z(s)ds, z(a) = 1 (26)

∂x

∂a
(t, a, x0) + Φ(t, a, x0)f(a, x0)

∫ t

a

Φ(t, s, x0)g(s, a, x0)ds = 0 (27)

and according to the nonlinear variation of constants formula we obtain

u(t) = x(t) +

∫ t

a

Φ(t, s, u(s))h

(
s, u(s),

∫ t

a

k(s, τ, u(τ))dτ

)
ds. (28)

Theorem 4. Suppose that the following inequalities hold:

|Φ(t, s, u)h(s, u, z)| ≤ p(s)(|u|+ |z|), (29)

|k(t, s, u)| ≤ q(t, s)|u| (30)

for 0 ≤ s ≤ t, u, z ∈ R. If p(t) and q(t, s) are continuous nonnegative functions , qt(t, s) is a
nonpositive function and ∫ ∞

p(s)ds <∞,
∫ ∞
q(s, s)ds <∞ (31)

then for any bounded solution x(t, a, x0) of (24) in R+ the coresponding solution u(t, a, x0) of
(25) is bounded in R+.

Proof. As x(t, a, x0) is bounded then |x(t)| ≤M , whereM ∈ R+ is a nonzero constant. ¿From
(29),(30) and relation(28) we get

|u(t)| ≤M +

∫ t

a

p(s)|u(s)|ds+

∫ t

a

p(s)

(∫ s

a

q(s, τ)|u(τ)|dτ
)
ds.

¿From Theorem 2.1 it follows

|u(t)| ≤M
[
1 +

∫ t

a

p(s) exp

(∫ s

a

(p(τ) + q(τ, τ))dτ

)
ds

]
.

According to (31) it follows that |u(t)| is bounded and the proof is complete.
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CONVERGENCE  PROOF  OF A  MONTE  CARLO  SCHEME 
  FOR  THE  RESOLUTION 

OF  THE  SMOLUCHOWSKI  COAGULATION EQUATION 

BARAKEH  Bilal,  (RL) 

Abstract. This paper studies the convergence in probability of a Monte Carlo simulation 
scheme for solving Smoluchowsi’s coagulation equation. We propose the lemmas and theorems 
needed to achieve the convergence proof.

Key words: Smoluchowski equation  ; Monte Carlo scheme ; Convergence in probability. 

1 Introduction 

The mathematical foundation and numerical simulation of cluster growth is a research field of high 
current interest. Models of cluster growth arise in various phenomena and find their applications in 
a wide range of engineering contexts ranging from environmental sciences (growing and spreading 
of air pollutants) to the development of engines (behaviour of fuel mixtures). This theory models 
and describes the evolution of a system of a large number of particles that can coagulate to form 
clusters which in turn can coalesce in order to form bigger clusters. Each cluster is identified by its 
size. In his work on coagulation processes in colloids, M.V. Smoluchowski [1] proposed an infinite 
system of differential equations to describe the time evolution in some physical system of the 
concentration of particles of size i at time t denoted by ),( tic . In the simplest situation, the space 
homogeneous discrete Smoluchowski equation reads, for i=1,2,3,…and t>0 : 

)0()0,(

),(),(),(),(),(),(
2
1),(

1

1

1

i

j

i

j

cic

tjcticjiKtjctjicjjiKti
t
c

 (1) 

In fact, this system describes a nonlinear evolution equation of infinite dimension, with initial 
condition 1))0(( iic  and so that 1)0(

1i
ic . The rate of merging of particles of size i and j at time t is 

given by the coagulation kernel K(i,j) that is naturally supposed to be nonnegative 
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[i.e., IRINK 2)(: ] and symmetric [i.e., )],(),( ijKjiK . The structure of equation (1) is 
closely related to that of the fundamental Boltzmann equation of rarefied gas dynamics with a 
transport differential operator on the left hand side and a local quadratic particle interaction operator 
on the right hand side. The first term on the right hand side shows that the concentration of particles 
of size i increases as a result of coagulation of particles of sizes i-j and j. This is the gain term. The 
coefficient ½ is due to the fact that K is symmetric. The second term corresponds to the depletion of 
particles of size i after coalescence with other particles. It represents the loss term. Due to the 
complexity of the Smoluchowski equation, the problem of numerically solving it with deterministic 
methods is a difficult task that cannot be handled on a computer with reasonable calculation efforts. 
The main numerical tools for solving such equations are Monte Carlo simulations. Several 
stochastic algorithms have been proposed [2,3,4] and are now understood as mathematically 
rigorous numerical algorithms. But the convergence of the simulated solutions is a field where 
researchers are still contributing to improve it [5,6]. The aim of this work is to study the 
convergence of a modified Monte Carlo scheme proposed in [2]. We first reformulate the algorithm 
and then we propose the lemmas and theorems needed to achieve the convergence proof.

2 Reformulation of the algorithm 

The algorithm proposed in [2] is based on a Monte Carlo scheme that takes a system of test particles 
which interact and form clusters according to the dynamics described above. Random numbers are 
used to find out which clusters interact and to determine the size of the new clusters.We first recall 
some basic notations and concepts. If N0 is the initial total number of particles, then at time
t, ),(0 ticN represents the total number of particles of size i and

1
0 ),(

i
ticN  is the total number of 

particles. The quantity ),( tiic  represents the fraction at time t of the whole mass produced by the 
particles of mass i. The whole mass is given by  

1
),()(

i
tiictm .

Multiplying equation (1) by i and summing over all, one can verify that the whole mass is 
conserved

,0),(
1i

tiic
dt
d  (2) 

provided that the relevant summations converge and can be interchanged which is valid as long as 

   
1,

),(),(),(
ji

tjcticjiK

We refer to [7] for a study of existence, uniqueness, and conservation of mass of solutions. Since 
particles may stick together, the total number of particles is a decreasing quantity and this may 
display a poor statistics for the simulation. Therefore, to avoid this deficiency one can approximate 
the following mass density function 

),(),( tiictig , (3) 

If we write )(~ tgi instead of g(i,t) the equation (1) becomes: 
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ii

j
ji

i

j
jji

i

gg

tgtgjiKtgtgjjiKt
t

g

,0

1

1

1

)0(~

)(~)(~),()(~)(~),()(
~

 (4) 

Here,

j
jiKjiK ),(),( .

The kernel K  is bounded and without loss of generality we assume that at time t=0

.1
1

,0
i

ig  (5) 

Therefore, the conservation of mass leads to 

1
.1)(~

i
i tg  (6) 

We start with an initial N-tuple )(
0

NZ = NN
N

NN INzzz )(
,0

)(
2,0

)(
1,0 .........,,, . The entry )(

,0
N
iz  is representing 

a particle of mass1/N  with ‘label’ i and such that 

)0(~}:{#1 )(
,0 i
N giz

N
INi  (7) 

If we assume a monodisperse initial condition 

  0)0(~)0(~,1)0(~
321 ggg , (8) 

we set, 

1)(
,0

)(
2,0

)(
1,0

N
N

NN zzz . (9) 

We choose a time step t such that  

  1),( jiKSupt
INi,j

. (10) 

This means that the time step has to be permanently reduced while particles progress in to the 
domain of increasing mass. For ,INn  we set tntn . At ntt , we consider a point set 

)()( nZ N of N particles )(....,),( )()(
1 nznz N

N
N such that INi ,

)(~})(:{#1 )(
ni

N tginz
N

. (11) 

For INi , we define the following independent equally distributed random numbers 

non.si0
,)(si1

)(
)(

)(
,

inz
n

N
N

i  (12) 

such that 



Aplimat – Journal of Applied Mathematics

volume 2 (2009), number2152

N N
i

N
i n

N
nG

1

)(
,

)( )(1)( , (13) 

with,

  1.)(
1

)(

i

N
i nG  (14) 

One can notice easily that 

)()( nG N
i })(:{#1 )( inz

N
N  (15) 

Applying the Euler time discretization for )(~
ni tg will lead to 

.,),(~)(~),(

)(~)(~),())(~)(~(1

1

1

1
1

INnINitgtgjiK

tgtgjjiKtgtg
t

njni
j

njnji

i

j
nini

Using now the fact that, INn

1
1)(~

j
nj tg ,

we conclude that )(~
1ni tg  is defined by

 )(~)(~)),(1()(~)(~),()(~
1

1

1
1 ninj

j
njnji

i

j
ni tgtgjitKtgtgjjitKtg  (16) 

Then the Monte Carlo scheme proposed in [2] can now be announced as follows: 

Initialisation step: For Ni1 , choose at time t=0, ....}3,2,1{)0()( N
iz such that

i
N

i gGINi ,0
)( )0(

Coagulation step: For N1 , the transition from )()( nz N à )1()( nz N is given by
the following random game: 

(i) For i=1,…,N choose equidistributed random numbers NN
i ,...,2,1)( and ]1,0[)( N

ir .
(ii) Choose a time step t such that 1),( jiKSupt

INi,j
.

(iii) Let ),(),( jitKjip and define for N1

notif)(

,,)(if)()(
:)1(

)(

)(
)(

)()()(
)(

)(
)(

)( )()( )()(

nz

nznzpnrnznz
nz

N

N
n

NNN
n

N
N NN

  (17) 
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3 Convergence proof 

To establish the convergence of the numerical scheme, we use the following two lemmas:   

Lemma 1. Let ),,( PA be a probability space. Let 1)( NNX be a sequence of real random 
variables into L2( ). If ][ NXE is the expected value of the variable NX and IR  then the 
following two conditions are equivalent :

(a) )(2L
NX       ;      (b) 22 ][limand][lim NNNN

XEXE

Lemma 2. Let 1)( NNP  be a sequence of probabilities on IN*, defined by 
i

i

N
iNP

1

)( ,

which converges weakly(1) to the probability P on IN*, with 
i

i
iP

1
,

 where, i is the Dirac measure on IN* and 1
1

)(

i

N
i .

If 1
)( )( N

Ns is a family of uniformly bounded sequences and if (s) is a bounded sequence, such that 
)()(lim )( isisINi N

N
,

then

)()(lim
1

)()( isis
i

i
NN

iN
.

In particular, this implies that for all bounded sequence  we have 

),()(lim
11

)( ii
i

i
i

N
iN

The convergence of the numerical scheme is resulting from the following proposition that will be 
announced and verified.

Proposition. For all  ifINn ,

INi  : ),(~)(
2)(

ni
LN

i tgnG
then

INi  : )(~)1( 1
)( 2

ni
LN

i tgnG .

Proof:
By the lemma 1, we notice that we just need to show that : For  ,and INiINn

)(~)]1([lim 1
)(

ni
N

iN
tgnGE   (18) 

(1) PP
Weakly

NN  if , i
N

iN
INi )(lim:  (i.e.) :0C ,, PP

NN
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and
2

1
2)(2)( )}(~{)]1([lim])}1([{lim }{ ni

N
iN

N
iN

tgnGEnGE  (19) 

To verify (18), we use the formula of conditional expectations. For N1 , we have 

))1(()]1([ )()(
, inzPnE NN

i =

2

)(

1

)( ))(,)(())(,)(|)1(( )(
)(

)(

1 1

)(
)(

)()(

p

N
n

N

j k
p

N
n

NN knzjnzPknzjnzinzP NN .

We compute now the terms p1 and p2 as follows: 

a) if j < i and k = i-j, then 
))(,)(|)1(( )(

)(
)()(

1 )( knzjnzinzPp N
n

NN
N

 =  ))(,)(|),()(( )(
)(

)()(
)( jinzjnzjijpnrP N

n
NN

N

                                = );,( jijp

b) if j = i, then 
))(,)(|)1(( )(

)(
)()(

1 )( knzjnzinzPp N
n

NN
N

))(,)(|)()1(( )(
)(

)()()(
)( knzinznznzP N

n
NNN

N

 = ))(,)(|),()(( )(
)(

)()(
)( knzinzkipnrP N

n
NN

N

 =1- ),( kip ;

c) otherwise,
 0))(,)(|)1(( )(

)(
)()(

1 )( knzjnzinzPp N
n

NN
N .

As for the term 2p , we have 
   ))(,)(( )(

)(
)(

2 )( knzjnzPp N
n

N
N

=
N

m

NN
m

N mnknzjnzP
1

)()()( ))(,)(,)(( =
N

m

NN
m

N mnPknzPjnzP
1

)()()( ))(())(())((
N

m

N
m

NN knzPmnPjnzP
1

)()()( ))(())(())((

               
N

m

N
k,m

N
j nE

N
nE

1

)()(
, )]([1)]([

                                )]([)]([ )()(
, nGEnE N

k
N

j

Therefore, for N1

.)]([)),(1()]([)]([])([),()]1([
1

)()(
,

)(
1

1

)(
,

)(
,

k

N
k

N
i

N
ji

i

j

N
j

N
i nGEkipnEnGEnEjijpnE

If we divide the last equality by N and we sum over all Nto1 , we obtain 
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)]([)),(1()]([)]([)]([),()]1([
1

)()()()(
1

1

)(

k

N
k

N
i

N
ji

N
j

i

j

N
i nGEkipnGEnGEnGEjijpnGE

With the relations (6) and (14), let us define on IN* the probabilities: 

i

i
nj tgP

1
)(~  and i

i

N
jN nGEP

1

)( )]([ .

Using the assumption of the proposition and the lemma, we deduce that 

)(~)]([lim )(
nj

N
jN

tgnGEINj ,  (20) 

hence, the sequence 1)( NNP converges in the weak sense to P. Now, if from one side we define 
the sequence  

notif0
,if)(~),(

)(
ijtgjijp

js nji  (21)

and from another side, we introduce for *INN the uniformly bounded sequences : 

notif0
,if)]([),(

)()( ijnGEjijp
js njiN  (22) 

We deduce from (20) and lemma (2) that  

)(~),()(~)]([),()]([lim
1

1

)(
1

1

)(
njin

i

j
j

N
ji

i

j

N
jN

tgjijptgnGEjijpnGE

Using now the sequence ),,(1)( kipk one can verify also with (20) and lemma (2) that  

)),(1)((~)),(1)](([lim
11

)( kiptgkipnGE n
k

k
k

N
kN

.

This allows us in particular to write  

)).,(1)((~)(~)(~),()(~)]1([lim
1

1

1

1

)( kiptgtgtgjijptgnGE n

i

j
kninjin

i

j
j

N
iN

By remarking that the right hand side of this equation is equal to )(~
1ni tg , we finally conclude 

that )]1([lim )( nGE N
iN

= )(~
1ni tg . This will end the proof of (18).  

As for the relation (19), we will prove it as follows:  

),1()1(1)1(1)}1({
1,

)(
,

)(
,2

1

)(
,2

2)(
N

m
m

N
mi

N
i

N
N

i
N

i nn
N

n
N

nG

 (the square of the indicator function is equal to itself). 

But for ,m the variables )1(and)1( )(
,

)(
, nn N

mi
N

i are independent. Hence,  
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1,

)(
,

)(
,2

1

)(
,2

2)( N
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N
mi

N
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N N
i

N
i nEnE

N
nE

N
nGE

Since the variables )1()(
, nN

i are Bernoulli’s random variables, one can deduce easily that :

N N
i

N N
i N

nE
NN

nE
N 1

2)(
,2

1

)(
,2

1)]}1([{1and1])1([1

hence,
N

N
iN

N
N

iN
nE

N
nE

N 1

2)(
,2

1

)(
,2 )]}1([{1lim0])1([1lim

This means, 

}{ )]1([)]1([1)])1([(1lim]))1([(lim
1,

)(
,

)(
,2

1

2)(
,2

2)( N

m
m

N
mi

N
i

N N
iN

N
iN

nEnE
N

nE
N

nGE

,)]1([1lim 2

1

)(
, }{ N
N

iN
nE

N

which concludes the proof of (19).

Finally, one can see that the proof of the proposition is resulting from the lemma (1) and concludes 
the convergence proof of the algorithm. 

4 Conclusions 

In this paper we analysed a procedure for solving Smoluchowski’s coagulation equation. A detailed 
convergence proof based on a probabilistic approach has been formulated. This work aims to be a 
contribution in the study of the convergence of other similar numerical schemes.
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RECONSTRUCTION OF CLOSELY SPACED SMALL
INHOMOGENEITIES VIA BOUNDARY MEASUREMENTS

FOR THE FULL TIME-DEPENDENT
MAXWELL’S EQUATIONS

DAVEAU Christian, (F), KHELIFI Abdessatar, (F), SUSHCHENKO Anton, (F)

Abstract. We consider for the full time-dependent Maxwell’s equations the inverse prob-
lem of identifying locations and certain properties of small electromagnetic inhomogeneities
in a homogeneous background medium from dynamic boundary measurements on the
boundary for a finite time interval.
Key words and phrases. Maxwell’s equations, inhomogeneities, inverse problem, re-
construction, geometric control
Mathematics Subject Classification. 35R30, 35B40, 35B37, 78M35

1 Introduction

The ultimate objective of the work described in this paper is to determine locations and certain
properties of the shapes of small electromagnetic inhomogeneities in a homogeneous background
medium from dynamic boundary measurements on part of the boundary and for finite interval
in time. Using as weights particular background solutions constructed by a geometrical con-
trol method we develop an asymptotic method based on appropriate averaging of the partial
dynamic boundary measurements.
For stationary Maxwell’s equations it has been known that the Dirichlet to Neumann map
uniquely determines (smooth) isotropic electromagnetic parameters, see [16], [18], [20]. We will
provide in this paper a rigorous derivation of the inverse Fourier transform of a linear combi-
nation of derivatives of point masses, located at the positions zj of the inhomogeneities, as the
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leading order term of an appropriate averaging of (partial) dynamic boundary measurements of
the tangential components of electric fields on part of the boundary. Our formulas may be used
to determine properties (location, relative size ) of the small inhomogeneities in case a single,
or a few (tangential) boundary electric fields are known. Our approach differs from [1], [2], [3],
[4], [22] and is expected to lead to very effective computational identification algorithms.
Our main result is given by:

Theorem 4.1 Let η ∈ Rd. Let Eα be the unique solution in C0(0, T ; X(Ω)) ∩ C1(0, T ; L2(Ω))
to the Maxwell’s equations (3) with ϕ(x) = η⊥eiη·x, ψ(x) = −i

√
μ0|η|η⊥eiη·x, and f(x, t) =

η⊥eiη·x−i
√

μ0|η|t. Suppose that Γ and T geometrically control Ω, then we have∫ T

0

∫
Γ

[
θη · ( curl Eα × n − curl E × n) + ∂tθη · ∂t( curl Eα × n − curl E × n)

]
dσ(x)dt =

α2

m∑
j=1

(μ0 − μj)e
2iη·zjMj(η) · η + O(α2),

where θη is the unique solution to the Volterra equation (20) with gη defined as the boundary
control in (18) and Mj is the polarization tensor of Bj, defined by

(Mj)k,l = ek · (
∫

∂Bj

(νj + (
μj

μ0

− 1)
∂Φj

∂νj

|+(y))y · el dsj(y)).

Here (e1, e2) is an orthonormal basis of Rd. The term O(α2) is independent of the points
{zj, j = 1, · · · ,m}.
For discussions on closely related (stationary) identification problems we refer the reader to
[19],[21], [6], and [10].

2 Problem formulation

Let Ω be a bounded C2-domain in Rd, d = 2, 3. Assume that Ω contains a finite number of
inhomogeneities, each of the form zj + αBj, where Bj ⊂ Rd is a bounded, smooth domain
containing the origin. The total collection of inhomogeneities is Bα = ∪m

j=1(zj + αBj). The
points zj ∈ Ω, j = 1, . . . ,m, which determine the location of the inhomogeneities, are assumed
to satisfy the following inequalities:

|zj − zl| ≥ c0 > 0,∀ j 	= l and dist(zj, ∂Ω) ≥ c0 > 0,∀ j. (1)

Assume that α > 0, the common order of magnitude of the diameters of the inhomogeneities,
is sufficiently small, that these inhomogeneities are disjoint, and that their distance to Rd \Ω is
larger than c0/2. Let μ0 and ε0 denote the permeability and the permittivity of the background
medium, and assume that μ0 > 0 and ε0 > 0 are positive constants. Let μj > 0 and εj > 0
denote the permeability and the permittivity of the j-th inhomogeneity, zj +αBj, these are also
assumed to be positive constants. Introduce the piecewise-constant magnetic permeability

μα(x) =

{
μ0, x ∈ Ω \ B̄α,
μj, x ∈ zj + αBj, j = 1 . . . m.

(2)
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If we allow the degenerate case α = 0, then the function μ0(x) equals the constant μ0. The
electric permittivity is defined by εα(x) = ε0, for all x ∈ Ω. Let n = n(x) denote the outward

unit normal vector to Ω at a point on ∂Ω, ∂tu =
∂u

∂t
and Δ means the Laplace operator defined

by Δu =
d∑

i=1

∂2u

∂x2
i

.

In this paper, we will denote by bold letters the functional spaces for the vector fields. Thus
Hs(Ω) denotes the usual Sobolev space on Ω and Hs(Ω) denotes (Hs(Ω))d and L2(Ω) denotes
(L2(Ω))d. As usual for Maxwell equations, we need spaces of fields with square integrable curls:

H( curl ; Ω) = {u ∈ L2(Ω), curl u ∈ L2(Ω)},

and with square integrable divergences

H(div ; Ω) = {u ∈ L2(Ω), div u ∈ L2(Ω)}.

We will also need the following functional spaces:

Y (Ω) = {u ∈ L2(Ω), div u = 0 in Ω}, X(Ω) = H1(Ω) ∩ Y (Ω),

and TL2(∂Ω) the space of vector fields on ∂Ω that lie in L2(∂Ω). Finally, the ”minimal” choice
for the electric variational space would be

XN(Ω) = {v ∈ H( curl ; Ω) ∩ H(div ; Ω); v × n = 0 on ∂Ω}.

Now, we introduce the following time-dependent Maxwell equations (associated to the elec-
tric field) ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(εα∂2
t + curl

1

μα

curl )Eα = 0 in Ω × (0, T ),

div (εαEα) = 0 in Ω × (0, T ),

Eα|t=0 = ϕ, ∂tEα|t=0 = ψ in Ω,

Eα × n|∂Ω×(0,T ) = f,

(3)

where Eα ∈ Rd is the electric field, f the boundary condition for Eα × n, and ϕ and ψ the
initial data.

Let E be the solution of the Maxwell’s equations in the homogeneous domain:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(ε0∂
2
t + curl

1

μ0

curl )E = 0 in Ω × (0, T ),

div (ε0E) = 0 in Ω × (0, T ),

E|t=0 = ϕ, ∂tE|t=0 = ψ in Ω,

E × n|∂Ω×(0,T ) = f.

(4)
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Here T > 0 is a final observation time and ϕ, ψ ∈ C∞(Ω) and f ∈ C∞(0, T ; C∞(∂Ω)) are subject
to the compatibility conditions

∂2l
t f |t=0 = (Δlϕ) × n|∂Ω and ∂2l+1

t f |t=0 = (Δlψ) × n|∂Ω, l = 1, 2, . . .

it follows that (4) has a unique solution E ∈ C∞([0, T ] × Ω). It is also known (see for example
[17]) that since Ω is smooth (C2− regularity would be sufficient) the non homogeneous Maxwell’s
equations (3) have a unique weak solution Eα ∈ C0(0, T ; X(Ω)) ∩ C1(0, T ;L2(Ω)). Indeed,
curl Eα belongs to C0(0, T ; X(Ω)) ∩ C1(0, T ;L2(Ω)).

3 Asymptotic formula

We start the derivation of the asymptotic formula for curl Eα ×n with the following estimate.

Lemma 3.1 The following estimate as α → 0 holds:

||∂t(Eα − E)||L∞(0,T ;L2(Ω)) + ||Eα − E||L∞(0,T ;XN (Ω)) ≤ Cα, (5)

where the constant C is independent of α and the set of points {zj}m
j=1 provided that assumption

(1) holds.

Proof. From (3)-(4), it is obvious that Eα − E ∈ XN(Ω), then due to the Green formula we
have for any v ∈ XN(Ω):∫

Ω

ε0∂
2
t (Eα − E) · v dx +

∫
Ω

1

μα

curl (Eα − E) · curl v dx = (6)

m∑
j=1

(
1

μ0

− 1

μj

)

∫
zj+αBj

curl E · curl v dx.

Let vα be defined by {
vα ∈ XN(Ω),

curl 1
μα

curl vα = ∂t(Eα − E) in Ω.
(7)

Then, ∫
Ω

1

μα

curl (Eα − E) · curl vα dx = −
∫

Ω

∂t(Eα − E) · (Eα − E) dx =

−1

2
∂t

∫
Ω

|Eα − E|2 dx

and by Green formula, relation (7) gives:∫
Ω

∂2
t (Eα − E) · vα dx =

∫
Ω

curl
1

μα

curl ∂tvα · vα dx

= −
∫

Ω

1

μα

curl ∂tvα · curl vα dx

= −1

2
∂t

∫
Ω

1

μα

| curl vα|2 dx.
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Thus, it follows from (6) that

ε0∂t

∫
Ω

1

μα

| curl vα|2 dx + ∂t

∫
Ω

|Eα − E|2 dx =

−2
m∑

j=1

(
1

μ0

− 1

μj

)

∫
zj+αBj

curl E · curl vα dx.

Next,

|
m∑

j=1

(
1

μ0

− 1

μj

)

∫
zj+αBj

curl E · curl vα| ≤ C|| curl E||L2(Bα)|| curl vα||L2(Ω).

Since E ∈ C∞([0, T ] × Ω) we have

|| curl E||L2(Bα) ≤ || curl E||L∞(Bα)α(
m∑

j=1

|Bj|)
1
2 ≤ Cα,

which gives

|
m∑

j=1

(
1

μ0

− 1

μj

)

∫
zj+αBj

curl E · curl vαdx| ≤ Cα|| curl vα||L2(Ω)

and so,

ε0∂t

∫
Ω

1

μα

| curl vα|2 dx+∂t

∫
Ω

|Eα−E|2 dx ≤ Cα(

∫
Ω

1

μα

| curl vα|2 dx+

∫
Ω

|Eα−E|2 dx)1/2. (8)

From the Gronwall Lemma it follows that

(

∫
Ω

1

μα

| curl vα|2 dx)1/2 + (

∫
Ω

|Eα − E|2 dx)1/2 ≤ Cα. (9)

Combining this last estimate (9) with the fact that

||∂t(Eα − E)||L∞(0,T ;H−1(Ω)) ≤ C|| curl vα||L∞(0,T ;L2(Ω))

the following estimate holds

||Eα − E0||L∞(0,T ;L2(Ω)) + ||∂t(Eα − E0)||L∞(0,T ;L2(Ω)) ≤ Cα. (10)

Now, taking (formally) v = ∂t(Eα − E) in (6) we arrive at

ε0∂t

∫
Ω

[
|∂t(Eα − E)|2 +

1

μα

| curl (Eα − E)|2
]

dx =

2
m∑

j=1

(
1

μ0

− 1

μj

)

∫
zj+αBj

curl E · curl ∂t(Eα − E) dx.
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By using the regularity of E in Ω and estimate (10) given above, we see that

|
m∑

j=1

(
1

μ0

− 1

μj

)

∫
zj+αBj

curl E · curl ∂t(Eα − E) dx| ≤ C|| curl E||H2(Bα)||∂t(Eα − E)||H−1(Ω)

≤ Cα2,

where C is independent of t and α, and so, we obtain

∂t

∫
Ω

[
|∂t(Eα − E)|2 +

1

μα

| curl (Eα − E)|2
]

dx ≤ Cα2

which yields the following estimate

||∂t(Eα − E)||L∞(0,T ;L2(Ω)) + ||Eα − E||L∞(0,T ;XN (Ω)) ≤ Cα,

where C is independent of α and the points {zj}m
j=1.

Now, we can estimate curl Eα − curl E0 as follows.

Proposition 3.1 Let Eα and E be solutions to the problems (3) and (4) respectively. There
exist constants 0 < α0, C such that for 0 < α < α0 the following estimate holds:

|| curl (Eα − E0)||L∞(0,T ;L2(Ω)) ≤ Cα, (11)

Proof. To prove estimate (11) it is useful to introduce the following function

v̂(x) =

∫ T

0

v(x, t)z(t) dt ∈ L2(Ω), (12)

where v ∈ L1(0, T ; L2(Ω)) and z(t) is a given function in C∞
0 (]0, T [).

Then,

Ê(x) =

∫ T

0

E(x, t)z(t) dt and Êα(x) =

∫ T

0

Eα(x, t)z(t) dt ∈ X(Ω),

which by relation (5) give ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(Êα − Ê) ∈ H1(Ω),

curl curl (Êα − Ê) = 0(α) in Ω,

div (Êα − Ê) = 0 in Ω,

(Êα − Ê) × n|∂Ω = 0,

and so,

|| curl (Êα − Ê)||L2(Ω) = O(α). (13)

164 volume 2 (2009), number 2



Aplimat - Journal of Applied Mathematics

The fact that curl (Eα −E) belongs to L∞(0, T ;L2(Ω)) and by using estimate (13) we deduce
that ∫

Ω

| curl Eα(x, t) − curl E(x, t)|2 dx = O(α2) a.e. in t ∈ (0, T ),

which means that

|| curl (Eα − E)||L2(Ω) = O(α) a.e. in t ∈ (0, T ).

Thus, estimate (11) follows immediately if we take the sup on t ∈ (0, T ) in the last relation.

Before formulating our main result in this section, let us denote Φj, j = 1, . . . ,m the unique
vector-valued solution to ⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ΔΦj = 0 in Bj, and Rd \ Bj,

Φj is continuous across ∂Bj,

μj

μ0

∂Φj

∂νj

|+ − ∂Φj

∂νj

|− = −νj,

lim
|y|→+∞

|Φj(y)| = 0,

(14)

where νj denotes the outward unit normal to ∂Bj, and superscripts − and + indicate the
limiting values as the point approaches ∂Bj from outside Bj, and from inside Bj, respectively.
The existence and uniqueness of this Φj can be established using single layer potentials with
suitably chosen densities, see [6] for the case of conductivity problem. For each inhomogeneity
zj +αBj we introduce the polarizability tensor Mj which is a d×d, symmetric, positive definite
matrix associated with the j-th inhomogeneity, given by

(Mj)k,l = ek · (
∫

∂Bj

(νj + (
μj

μ0

− 1)
∂Φj

∂νj

|+(y))y · el dσj(y)). (15)

Here (e1, . . . , ed) is an orthonormal basis of Rd. In terms of this function we are able to prove
the following result about the asymptotic behavior of curl Eα · νj|∂(zj+αBj)+ .

Theorem 3.1 Suppose that (1) is satisfied and let Φj, j = 1, . . . ,m be given as in (14). Then,
for the solutions Eα, E of problems (3) and (4) respectively, and for y ∈ ∂Bj we have

( curl Eα(zj + αy) · νj)|∂(zj+αBj)+ = curl E(zj, t) · νj (16)

+(1 − μj

μ0

)
∂Φj

∂νj

|+(y) · curl E(zj, t) + o(1).

The term o(1) uniform in y ∈ ∂Bj and t ∈ (0, T ) and depends on the shape of {Bj}m
j=1 and

Ω, the constants c0, T , μ0, {μj}m
j=1, the data ϕ, ψ, and f , but is otherwise independent of the

points {zj}m
j=1.

Proof.
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Let Eα = curl Eα(x, t) and E0 = curl E(x, t). Then, according to (3)-(4) we have

ε0∂
2
t Eα − curl

1

μα

Eα = 0 and curl Eα = 0, for x ∈ Ω. (17)

We restrict, for simplicity, our attention to the case of a single inhomogeneity, i.e., the case
m = 1. The proof for any fixed number m of well separated inhomogeneities follows by iteration
of the argument that we will present for the case m = 1. In order to further simplify notation,
we assume that the single inhomogeneity has the form αB, that is, we assume it is centered
at the origin. We denote the electromagnetic permeability inside αB by μ∗ and define Φ∗ the
same as Φj, defined in (14), but with Bj and μj replaced by B and μ∗, respectively. Define ν to
be the outward unit normal to ∂B. Now, following a common practice in multiscale expansions

we introduce the local variable y =
x

α
, then the domain Ω̃ = (

Ω

α
) is well defined.

Next, let � be given in C∞
0 (]0, T [). For any function v ∈ L1(0, T ;L2(Ω)), we define

v̂(x) =

∫ T

0

v(x, t) �(t) dt ∈ L2(Ω).

We remark that ∂̂tv(x) = −
∫ T

0

v(x, t)�′(t) dt. So that we deduce from (17) that Êα satisfies

⎧⎪⎨
⎪⎩

curl
1

μα

Êα =

∫ T

0

Eα �′′(t) dt in Ω,

curl Êα = 0 in Ω.

Analogously, Ê satisfies ⎧⎪⎨
⎪⎩

1

μ0

curl Ê =

∫ T

0

E �′′(t) dt in Ω,

curl Ê = 0 in Ω.

Indeed, we have Êα × n = Ê × n = curl ∂Ωf̂ × n on the boundary ∂Ω, where curl ∂Ω is the
tangential curl. Following [4] and [1], we introduce q∗α as the unique solution to the following
problem ⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Δq∗α = 0 in Ω̃ = (
Ω

α
) \ B and in B,

q∗α is continuous across ∂B,

μ0
∂q∗α
∂ν

|+ − μ∗
∂q∗α
∂ν

|− = −(μ0 − μ∗)Ê(αy) · ν on ∂B,

q∗α = 0 on ∂Ω̃.

The jump condition

μ0
∂q∗α
∂ν

|+ − μ∗
∂q∗α
∂ν

|− = −(μ0 − μ∗)Ê(αy) · ν on ∂B
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guarantees that Êα(x) − Ê(x) − grad yq
∗
α( x

α
) belongs to the functional space XN(Ω), where

grad ∂Ω is the tangential gradient. Since⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

curl
1

μα

(Êα − Ê − grad yq
∗
α(

x

α
)) =

∫ T

0

[
Eα − χ(Ω \ αB)E +

μ∗
μ0

χ(αB)E
]
�′′(t) dt in Ω,

curl (Êα − Ê − grad yq
∗
α(

x

α
)) = 0 in Ω,

(Êα − Ê − grad yq
∗
α( x

α
)) × n = 0 on ∂Ω,

where χ(ω) is the characteristic function of the domain ω, we arrive, as a consequence of the
energy estimate given by Lemma 3.1, at the following⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(Êα − Ê − grad yq
∗
α( x

α
)) ∈ XN(Ω),

curl
1

μα

(Êα − Ê − curl yq
∗
α(

x

α
)) = 0(α) in Ω,

curl (Êα − Ê − grad yq
∗
α(

x

α
)) = 0 in Ω,

(Êα − Ê − grad yq
∗
α( x

α
)) × n = 0 on ∂Ω.

From [4] we know that this yields the following estimate

|| curl
1

μα

(Êα − Ê − grad yq
∗
α(

x

α
))||L2(Ω) + ||Êα − Ê − grad yq

∗
α(

x

α
)||L2(Ω) ≤ Cα,

and so,

(Êα − Ê − grad yq
∗
α(

x

α
)) · ν|+ = 0(α) on ∂(αB).

Now, we denote by q∗ be the unique (scalar) solution to⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Δq∗ = 0 in Rd \ B and in B,

q∗ is continuous across ∂B,

μ0
∂q∗
∂ν

|+ − μ∗
∂q∗
∂ν

|− = −(μ0 − μ∗)Ê(0) · ν on ∂B,

lim
|y|→+∞

q∗ = 0.

In the spirit of Theorem 1 in [6] it follows that

||( grad yq∗ − grad yq
∗
α)(

x

α
)||L2(Ω) ≤ Cα1/2,

which yields

(Êα − Ê − grad yq∗(
x

α
)) · ν = o(1) on ∂(αB).

Writing q∗ in terms of Φ∗ gives∫ T

0

[
( curl Eα(αy) · ν)|∂(αB)+ − ν · curl E(0, t)− (

μ0

μ∗
− 1)

∂Φ∗
∂ν

|+(y) · curl E(0, t)
]
�(t) dt = o(1),

for any � ∈ C∞
0 (]0, T [), and so, by iterating the same argument for the case of m (well separated)

inhomogeneities zj + αBj, j = 1, . . . ,m, we arrive at the promised asymptotic formula (16).
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4 The identification procedure

Before describing our identification procedure, let us introduce the following cutoff function
β(x) ∈ C∞

0 (Ω) such that β ≡ 1 in a subdomain Ω′ of Ω that contains the inhomogeneities Bα

and let η ∈ Rd. We will take in what follows E(x, t) = η⊥eiη·x−i
√

μ0|η|t where η⊥ is a unit vector
that is orthogonal to η which corresponds to taking ϕ(x) = η⊥eiη·x, ψ(x) = −i

√
μ0|η|η⊥eiη·x,

and f(x, t) = η⊥ ×neiη·x−i
√

μ0|η|t and assume that we are in possession of the measurements of:

curl Eα × n on Γ × (0, T ),

where Γ is an open part of ∂Ω. Suppose now that T and the part Γ of the boundary ∂Ω
are such that they geometrically control Ω which roughly means that every geometrical optic
ray, starting at any point x ∈ Ω at time t = 0 hits Γ before time T at a non diffractive
point, see [5]. It follows from [17] (see also [13], [11] and [12]) that there exists (a unique)
gη ∈ H1

0 (0, T ; TL2(Γ)) (constructed by the Hilbert Uniqueness Method) such that the unique
weak solution wη to ⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(∂2
t + curl curl )wη = 0 in Ω × (0, T ),

div wη = 0 in Ω × (0, T ),

wη|t=0 = β(x)η⊥eiη·x, ∂twη|t=0 = 0 in Ω,

wη × n|∂Ω\Γ×(0,T ) = 0,

wη × n|Γ×(0,T ) = gη,

(18)

satisfies wη(T ) = ∂twη(T ) = 0 in Ω.

Let θη ∈ H1(0, T ; TL2(Γ)) denote the unique solution of the Volterra equation of second
kind

⎧⎨
⎩ ∂tθη(x, t) +

∫ T

t

e−i|η|(s−t)(θη(x, s) − i|η|∂tθη(x, s)) ds = gη(x, t) for x ∈ Γ, t ∈ (0, T ),

θη(x, 0) = 0 for x ∈ Γ.
(19)

The existence and uniqueness of this θη in H1(0, T ; TL2(Γ)) for any η ∈ Rd can be established
using the resolvent kernel. However, observing from differentiation of (19) with respect to t
that θη is the unique solution of the ODE:

{
∂2

t θη − θη = ei|η|t∂t(e
−i|η|tgη) for x ∈ Γ, t ∈ (0, T ),

θη(x, 0) = 0, ∂tθη(x, T ) = 0 for x ∈ Γ,
(20)

the function θη may be find (in practice) explicitly with variation of parameters and it also
immediately follows from this observation that θη belongs to H2(0, T ; TL2(Γ)).
We introduce vη as the unique weak solution (obtained by transposition as done in [15] and in
[14] [Theorem 4.2, page 46] for the scalar function) in C0(0, T ; X(Ω)) ∩ C1(0, T ; L2(Ω)) to the
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following problem

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(∂2
t + curl curl )vη = 0 in Ω × (0, T ),

div vη = 0 in Ω × (0, T ),

vη|t=0 = 0 in Ω,

∂tvη|t=0 =
m∑

j=1

i(1 − μ0

μj

)η × (νj + (
μ0

μj

− 1)
∂Φj

∂νj

|+)eiη·zjδ∂(zj+αBj) ∈ Y (Ω) in Ω,

vη × n|∂Ω×(0,T ) = 0.

Then, the following holds.

Proposition 4.1 Suppose that Γ and T geometrically control Ω. For any η ∈ Rd we have

∫ T

0

∫
Γ

gη · ( curl vη × n) dσ(x)dt = α2

m∑
j=1

μ0(1 − μj

μ0

)e2iη·zjη ·
∫

∂Bj

(νj (21)

+(
μj

μ0

− 1)
∂Φj

∂νj

|+(y))η · y dsj(y) + o(α2).

Proof. Multiply the equation (∂2
t + curl curl )vη = 0 by wη and integrating by parts over

(0, T ) × Ω, for any η ∈ Rd we have

α
m∑

j=1

i(1 − μj

μ0

)e2iη·zjη ·
∫

∂Bj

(νj + (
μj

μ0

− 1)
∂Φj

∂νj

|+(y))eiαη·y ds(y) =

−μ−1
0

∫ T

0

∫
Γ

gη · ( curl vη × n) dσ(x)dt.

Now, we take the Taylor expansion of αeiαη·y in the left side of the last equation, we obtain the
convenient asymptotic formula (21).

To identify the locations and certain properties of the small inhomogeneities Bα let us view
the averaging of the boundary measurements

curl Eα × n|Γ×(0,T ),

using the solution θη to the Volterra equation (19) or equivalently the ODE (20), as a function
of η. The following holds.
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Theorem 4.1 Let η ∈ Rd. Let Eα be the unique solution in C0(0, T ; X(Ω)) ∩ C1(0, T ; L2(Ω))
to the Maxwell’s equations (3) with ϕ(x) = η⊥eiη·x, ψ(x) = −i

√
μ0|η|η⊥eiη·x, and f(x, t) =

η⊥eiη·x−i
√

μ0|η|t. Suppose that Γ and T geometrically control Ω, then we have∫ T

0

∫
Γ

[
θη · ( curl Eα × n − curl E × n) + ∂tθη · ∂t( curl Eα × n − curl E × n)

]
dσ(x)dt =

α2

m∑
j=1

(μ0 − μj)e
2iη·zjMj(η) · η + O(α2),

(22)
where θη is the unique solution to the Volterra equation (20) with gη defined as the boundary
control in (18) and Mj is the polarization tensor of Bj, defined by

(Mj)k,l = ek · (
∫

∂Bj

(νj + (
μj

μ0

− 1)
∂Φj

∂νj

|+(y))y · el dsj(y)). (23)

Here (e1, e2) is an orthonormal basis of Rd. The term O(α2) is independent of the points
{zj, j = 1, · · · ,m}.

Proof. From ∂tθη(T ) = 0 and ( curl Eα × n − curl E × n)|t=0 = 0 the term

∫ T

0

∫
Γ

∂tθη ·
∂t( curl Eα × n − curl E × n) dσ(x)dt has to be interpreted as follows∫ T

0

∫
Γ

∂tθη · ∂t( curl Eα ×n− curl E ×n) = −
∫ T

0

∫
Γ

∂2
t θη · ( curl Eα ×n− curl E ×n). (24)

Next, introduce

Ẽα,η(x, t) = E(x, t) +

∫ t

0

e−i
√

μ0|η|svη(x, t − s) ds, x ∈ Ω, t ∈ (0, T ). (25)

We have∫ T

0

∫
Γ

[
θη · ( curl Eα × n − curl E × n) + ∂tθη · ∂t( curl Eα × n − curl E × n)

]
=

∫ T

0

∫
Γ

[
θη · ( curl Eα × n − curl Ẽα,η × n) + ∂tθη · ∂t( curl Eα × n − curl Ẽα,η × n)

]

+

∫ T

0

∫
Γ

[
θη ·

∫ t

0

e−i
√

μ0|η|svη(x, t − s) × n ds + ∂tθη · ∂t

∫ t

0

e−i
√

μ0|η|svη(x, t − s) × n ds
]
.

Since θη satisfies the Volterra equation (20) and

∂t(

∫ t

0

e−i
√

μ0|η|svη(x, t − s) × n ds) = ∂t(−e−i
√

μ0|η|t
∫ t

0

ei
√

μ0|η|svη(x, s) × n ds)

= i
√

μ0|η|e−i
√

μ0|η|t
∫ t

0

ei
√

μ0|η|svη(x, s) × n ds + vη(x, t) × n,
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we obtain by integrating by parts over (0, T ) that∫ T

0

∫
Γ

[
θη ·

∫ t

0

e−i
√

μ0|η|svη(x, t − s) × n ds + ∂tθη · ∂t

∫ t

0

e−i
√

μ0|η|svη(x, t − s) × n ds
]

=

∫ T

0

∫
Γ

(vη(x, t) × n) · (∂tθη +

∫ T

t

θη(s)e
i
√

μ0|η|(t−s) ds)

−i
√

μ0|η|(e−i
√

μ0|η|t∂tθη(t)) ·
∫ t

0

ei
√

μ0|η|svη(x, s) × n ds dt

=

∫ T

0

∫
Γ

vη(x, t) × n · (∂tθη +

∫ T

t

(θη(s) − i
√

μ0|η|∂tθη(s))e
i
√

μ0|η|(t−s) ds) dt

=

∫ T

0

∫
Γ

gη(x, t) · ( curl vη(x, t) × n) dt

and so, from Proposition 4.1 we obtain∫ T

0

∫
Γ

[
θη · ( curl Eα × n − curl E × n) + ∂tθη · ∂t( curl Eα × n − curl E × n)

]
=

α2

m∑
j=1

(1 − μj

μ0

)e2iη·zjη ·
∫

∂Bj

(νj + (
μj

μ0

− 1)
∂Φj

∂νj

|+(y))η · y dsj(y)

+

∫ T

0

∫
Γ

[
θη · ( curl Eα × n − curl Ẽα,η × n) + ∂tθη · ∂t( curl Eα × n

− curl Ẽα,η × n)
]

+ o(α2).

In order to prove Theorem 4.1 it suffices then to show that∫ T

0

∫
Γ

[
θη ·( curl Eα×n− curl Ẽα,η×n)+∂tθη ·∂t( curl Eα×n− curl Ẽα,η×n)

]
= o(α2). (26)

Since⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(∂2
t − curl

1

μ0

curl )(

∫ t

0

e−i
√

μ0|η|svη(x, t − s) ds)

=
m∑

j=1

i(1 − μj

μ0

)η × (νj + (
μj

μ0

− 1)
∂Φj

∂νj

|+(y))eiη·zjδ∂(zj+αBj)e
−i

√
μ0|η|t in Ω × (0, T ),

(

∫ t

0

e−i
√

μ0|η|svη(x, t − s) ds)|t=0 = 0, ∂t(

∫ t

0

e−i
√

μ0|η|svη(x, t − s) ds)|t=0 = 0 in Ω,

(

∫ t

0

e−i
√

μ0|η|svη(x, t − s) ds) × n|∂Ω×(0,T ) = 0,

it follows from Theorem 3.1 that⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(∂2
t − curl

1

μ0

curl )(Eα − Ẽα,η) = o(α2) in Ω × (0, T ),

(Eα − Ẽα,η)|t=0 = 0, ∂t(Eα − Ẽα,η)|t=0 = 0 in Ω,

(Eα − Ẽα,η) × n|∂Ω×(0,T ) = 0.

volume 2 (2009), number 2 171



Aplimat - Journal of Applied Mathematics

Following the proof of Proposition 3.1, we immediately obtain

||Eα − Ẽα,η||L2(Ω) = o(α2), t ∈ (0, T ), x ∈ Ω,

where o(α2) is independent of the points {zj}m
j=1. To prove (26) it suffices then from (24) to

show that the following estimate holds

|| curl Eα × n − curl Ẽα,η × n||L2(0,T ;TL2(Γ)) = o(α2).

Let θ be given in C∞
0 (]0, T [) and define

ˆ̃Eα,η(x) =

∫ T

0

Ẽα,η(x, t)θ(t) dt

and

Êα(x) =

∫ T

0

Eα(x, t)θ(t) dt.

From definition (25) we can write⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(Êα − ˆ̃Eα) ∈ H1(Ω),

curl curl (Êα − ˆ̃Eα) = 0(α) ∈ Y (Ω) in Ω,

div (Êα − ˆ̃Eα) = 0 in Ω,

(Êα − ˆ̃Eα) × n|∂Ω = 0.

(27)

In the spirit of the standard elliptic regularity [9] we deduce for the boundary value problem
(27) that

|| curl (Êα − ˆ̃Eα) × n||L2(Γ) = O(α2),

for all θ ∈ C∞
0 (]0, T [); whence

|| curl (Eα − Êα) × n||L2(Γ) = o(α2) a. e. in t ∈ (0, T ),

and so, the desired estimate (22) holds. The proof of Theorem 4.1 is then over.

Our identification procedure is deeply based on Theorem 4.1. Let us neglect the asymptot-
ically small remainder in the asymptotic formula (22), and define ℵα(η) by

ℵα(η) =

∫ T

0

∫
Γ

[
θη · ( curl (Eα − E) × n) + ∂tθη · ∂t( curl (Eα − E) × n)

]
.

Recall that the function e2iη·zj is exactly the Fourier Transform (up to a multiplicative constant)
of the Dirac function δ−2zj

(a point mass located at −2zj). From Theorem 4.1 it follows that the
function e2iη·zj is (approximately) the Fourier Transform of a linear combination of derivatives
of point masses, or

ℵ̆α(η) ≈ α2

m∑
j=1

Ljδ−2zj
,
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where Lj is a second order constant coefficient, differential operator whose coefficients depend

on the polarization tensor Mj defined by (23) (see [6] for its properties) and ℵ̆α(η) represents
the inverse Fourier Transform of ℵα(η). The reader is referred to [6] for properties of the tensor
polarization Mj.

The method of reconstruction consists in sampling values of ℵ̆α(η) at some discrete set
of points and then calculating the corresponding discrete inverse Fourier Transform. After a
rescaling the support of this discrete inverse Fourier Transform yields the location of the small
inhomogeneities Bα. Once the locations are known we may calculate the polarization tensors
(Mj)

m
j=1 by solving an appropriate linear system arising from (22). This procedure generalizes

the approach developed in [3] for the two-dimensional (time-independent) inverse conductivity
problem and generalize the results in [1] to the full time-dependent Maxwell’s equations.

5 Conclusion

In this paper, we are convinced that the use of approximate formulae such as (22) represents
a very promising approach to the dynamical identification of small inhomogeneities that are
embedded in a homogeneous medium. We also believe that our method yields a good approx-
imation to small amplitude perturbations in the electromagnetic parameters (for the example
of electric permittivity εα(x) = ε0 + αε(x)) from the measurements:

curl Hα × n on Γ × (0, T ).

Our method may yield the Fourier transform of the amplitude perturbation ε(x). This issue
will be considered in a forthcoming work [7].
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SHARK-FISH INTERPLAY AT DIFFERENT LIFESTAGES

CHATTERJEE Samrat, (IND), VENTURINO Ezio, (I)

Abstract. An LSF (larvae-shark-fish) food chain is described and analyzed, under rea-
sonable natural assumptions, to assess the possible control the intermediate element in the
chain can extert on their top predators. Some analytical results are reported. In view of
the complexity of the coexistence equilibrium, for understanding the system’s behavior in
its surroundings, numerical simulations are performed. A particular case is then examined
in more detail. Stability of the coexistence equilibrium as well as the one of the larvae
and shark-free equilibrium is studied. An interpretation of the results in ecological terms
is provided. We conclude the paper with some considerations on the role of fisheries in
this acquatic ecosystem.
Key words and phrases. predator-prey models, food webs, equilibria, stability, alter-
native food source.
Mathematics Subject Classification. Primary 92D25, 92D40; Secondary 37N25.

1 Introduction

Mathematical population theory studies interactions of different populations which share at
least partially a common environment. It originates from the researches of Volterra, D’Ancona
and Lokta in the early twentieth century, who combined the models of Malthus and Verhulst
of the previous century to describe interactions among predators and prey in nature. The
classical Lotka-Volterra model for fish interactions accounts for the oscillations found in the
data of fisheries in the Adriatic sea in the years following World War I. The model, due to
an intrinsic bad feature, namely the neutral stability of its equilibrium point, has been later
revised and improved. Studies in mathematical biology have then continued along the century
and have witnessed an upsurge in the seventies.

More complex models have been investigated, most notably food webs, in which in general
a top predator feeds on some prey, which themselves feed on other organisms at a lower trophic
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level. This can continue through several levels, until a bottom prey is found. In the ocean,
the latter is found at the planktonic level, in particular it is given by phytoplankton, on which
zooplankton itself feeds.

In this paper we consider a “low” level food chain, made only of three levels, but in which
the bottom one is made by the younglings of the top predators. In an acquatic environment,
the latter are at the larval stage. In the environment there are also fishes present, as well as the
adult predators. The larvae would mature into adults, if they survive the attacks of other fishes.
In fact they constitute a food source for all the other fishes, which in turn are predated upon
by the adult sharks. In this way, the interaction of fish with the sharks larvae might represent
an indirect control on the sharks themselves. With this model we focus on the relationships
among these populations and highlight some of their consequences.

Classical researches in field show that food webs are structured via complex interactions
between consumers, by the top down approach, while the from the bottom up approach shows
the role of resources, [2, 3, 6, 7, 8, 9].

2 The mathematical model description

We consider the ocean environment, in which the large predators, like the sharks, feed on all
other fishes. The latter have possibly different food sources, like for instance plankton, but can
also feed on the larvae of the former, thereby possibly reducing the number of top predators.
Let therefore L denote the sharks at larval stage, S denote the adult sharks, able to reproduce,
and F denote the fishes which act as predators on the larvae and as prey for the sharks. Note
also that the latter do not feed on their own larvae, as these are basically disregarded in view
of their too small size. The resulting model reads as follows

dL

dt
= −nL + ac̃SF − bLF

dS

dt
= gL − mS

dF

dt
= rF

(
1 − F

K

)
+ bcLF − aSF. (1)

Here, several parameters come into play. We denote by n the loss in the larval population
due both to the maturition process and natural deaths, g ≤ n represents the maturity rate
of the sharks from larval to adult, m is the natural death rates of the adult sharks. By r we
indicate the specific net growth rate of the fishes, which may be positive if their birth rate is
greater than their death rate and food sources other than larvae are available. It may also be
negative in case the fishes’ death rate exceeds the birth rate. The rate at which fishes predate
on the sharks larvae is b while a is the corresponding hunting rate of adult sharks predating on
the fishes. For r > 0, K represents the fish environment carrying capacity. For mathematical
simplicity, we assume here that the conversion rates c and c̃ due to the predation is equal to 1
for both fish and sharks.

The first equation describes the evolution of the larvae, which are born from the adult sharks
when they can feed on the fish, second term, and are removed by predation, third term, or once
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they die or become adult, first term. The second equation gives the sharks dynamics: they enter
this class via larvae maturation, first term and are subject only to natural mortality not having
higher predators in the food chain. The fishes, third equation, experience possibly logistic
growth, first two terms, also predate on larvae, second term, and are hunted by predators,
third term.

2.1 A boundedness result for the trajectories of the dynamical system

We consider Z, the total environment population, a function of time,

Z = L + S + F (2)

and take the time-derivative of (2) along the solutions of (1), thus obtaining

dZ

dt
= (g − n)L − mS + rF

(
1 − F

K

)
≤ −nL − mS + rF

(
1 − F

K

)
.

Taking an arbitrary constant η > 0 we get,

dZ

dt
+ ηZ ≤ ηZ − nL − mS + rF

(
1 − F

K

)
.

Now if we choose η ≤ min(n, m), then

dZ

dt
+ ηZ ≤ K(r + η)2

4r
,

where the quantity on the right hand side represent the maximum value attained by the parabola

ηF + rF

(
1 − F

K

)
.

Finally, the right-hand side of the above expression is thus bounded by a suitable constant
� > 0, so that

dZ

dt
+ ηZ ≤ �. (3)

The theory of differential inequalities [1] then ensured that

0 < Z(L(t), S(t), F (t)) <
�

η
(1 − e−ηt) + (L(0), S(0), F (0))e−ηt. (4)

Thus as t → ∞, we have 0 < Z < �
η
. Since the total population is bounded, also all the

individual populations, solutions of (1), are bounded in R3
0,+.
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3 Long term behavior of the model

In order to understand how the trajectories of the system behave in the long run, we study
the equilibria of the dynamical system (1). There are only three equilibrium points. One is
trivially given by the origin E0(0, 0, 0). Secondly we find the axial equilibrium point E1(0, 0, K)
in which only fish survive. The third one is the interior coexistence equilibrium point E∗ with
population levels given by

L∗ =
rmΔ

K
, S∗ =

rgΔ

K
, F ∗ =

nm

ag − bm
, Δ =

(ag − bm)K − nm

(ag − bm)2
=

K

ag − bm
− nm

(ag − bm)2
.

(5)
The trivial and the axial equilibrium points always exist. The feasibility of the interior equi-
librium point depends instead on the following conditions on the model parameters, namely

ag > bm +
nm

K
. (6)

4 Stability analysis of the equilibria

The Jacobian matrix for the system (1) at an arbitrary point of the L, S, F phase space is given
by

J ≡

⎛
⎝ −n − bF aS aS − bL

g −m 0

bF −aF r(K−2F )
K

+ bL − aS

⎞
⎠ . (7)

Our first result shows that for the system (1), total extinction is not possible. Indeed one of
the eigenvalues of the Jacobian (7) at the origin is r > 0 and so the origin is always an unstable
equilibrium.

The eigenvalues of the Jacobian (7) at E1(0, 0, K) are −r, −(n + bK), −m. Hence, the
axial equilibrium point E1 is always stable.

The Jacobian matrix (7) evaluated at E∗ simplifies a little to give

J ≡

⎛
⎝ −n − bF ∗ aS∗ aS∗ − bL∗

g −m 0
bF ∗ −aF ∗ −rF ∗

K

⎞
⎠ . (8)

From the latter, the characteristic equation of the matrix (8) can be obtained. It is given by
the cubic

Q1x
3 + Q2x

2 + Q3x + Q4 = 0 (9)

whose coefficients can be expressed in terms of the system parameters as follows

Q1 = K, Q2 = nK + bF ∗K + rF ∗ + mK,

Q3 = nrF ∗ − gaF ∗K + bF ∗2r + bF ∗mK + mrF ∗ − bF ∗KaS∗ + b2F ∗KL∗ + nmK,

Q4 = −gaF ∗2r + ga2F ∗S∗K − gaF ∗bL∗K + nmrF ∗ − bF ∗KaS∗m + b2F ∗KL∗m + bF ∗2mr.
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Due to the complexity of the above expressions, it is not possible to derive explicit stability
conditions that can be easily interpreted biologically. Thus we turn to numerical simulations
for our further analysis.

5 A particular case of system (1)

However, before proceeding further with the analysis of the model (1), it is interesting to
consider the role on the dynamics of the system of other possible food sources for the fishes.

To emphasize the effect of alternate food sources, we assume here that the latter are not
available for the growth of the fishes. In other words in absence of these other feeding possi-
bilities, the net growth rate for fishes is negative, i.e if r = (f − e), where e and f represent
respectively the natural death and birth rates of the fishes, then f = 0 making r = −e < 0.
In such circumstance, we disregard also any intraspecific competition for the alternate food
source. To make the corresponding term vanish, we could take the carrying capacity of the
logistic growth to infinity, i.e K → ∞.

With these assumptions, the model (1) reduces to

dL

dt
= −nL + aSF − bLF

dS

dt
= gL − mS

dF

dt
= −eF + bLF − aSF. (10)

The system (10) has only one feasible equilibrium point, i.e, the origin H0(0, 0, 0), which
always exists.

The eigenvalues of the Jacobian of the system (10) at the origin are by −n, −m, −e. Thus
the system (10) is always locally asymptotically stable around the origin. Since this is the only
equilibrium of the system and the boundedness result of Section 2.1 continues to hold also in
this case, the origin is also globally asymptotically stable. For this, observe that proceeding
as in Section 2.1 we find Ż = (g − n)L − mS − eF ≤ 0, so that as t → ∞, we find Z → 0+,
implying that each population in the system vanishes. In this case, we can thus consider Z as
a Lyapunov function.

Thus we observe that in the absence of the alternative food source for the fishes, total
extinction of the system is guaranteed. This however will never happen if the alternative food
sources are available for the fishes.

6 Numerical experiments

We performed extensive numerical simulation to substantiate our analytical results. To illus-
trate the results, we begin with the set of hypothetical parameter values given in Table 1. For
these values, Δ < 0 follows, so that no interior equilibrium point exists. Thus the only stable
point is E1 = (0, 0, 10), see Figure 1, which is also globally asymptotically stable.
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Table 1: A set of hypothetical parameter values.

Parameters values
n 0.7
b 0.8
g 0.25
m 0.3
a 0.7
r 0.2
K 10

We then vary the various parameters to study their effect on the dynamics of the system
(1). Increasing the value of g to 0.38, Δ becomes positive. In such case the interior equilibrium
exists, namely the point E∗ = (0.44, 0.56, 8.08) around which the system is locally stable, see
Figure 2. A further increase in g to 0.45 increases the value of Δ. This leads all populations to
coexist through periodic oscillations, see Figure 3. Decreasing the value of m to 0.2, Δ becomes
positive. The interior equilibrium point becomes E∗ = (0.1, 0.22, 9.3). It is found to be locally
asymptotically stable, see Figure 4. Further decrease of m to the value 0.1 increases the value
of Δ. The system now shows sustained limit cycles, see Figure 5. The same phenomenon is
observed for changes in some other parameters too, which we do not report here.

Summarizing our findings, we find that for the parameter values making Δ < 0 the system is
stable around the only equilibrium E1, while no coexistence is possible, since E∗ is not feasible.
Instead, for small positive value of Δ, the system is stable around the interior equilibrium point
E∗. Finally for large positive values of Δ, the populations of the system all coexist via periodic
oscillations.

Figure 1: The system tends to the stable equilibrium steady state E1.
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Figure 2: The system tends to the stable equilibrium coexistence steady state E∗ for g = 0.38

7 Interpretation

Our analytical and numerical results show that the stability of the system depends upon the
parameter combinations leading to the value of Δ. We found that the equilibrium with no
sharks, either adult or at the larval stage, namely E1(0, 0, K), always exists and it is locally
asymptotically stable. If the value of Δ is negative then this fish-only equilibrium E1(0, 0, K)
is the sole stable equilibrium point of the system (1). But, if the value of Δ is positive, then
the interior coexistence equilibrium point E∗ also is feasible. In this case for small values of
Δ then the system (1) is locally asymptotically stable near E∗. If Δ attains larger values, the
model (1) shows periodic oscillations. Thus, to maintain the stability of the system around the
coexistence steady state the parameters have to be controlled so as to obtain a small positive
value for Δ. In particular we remark here that among the parameters appearing in the definition
of Δ, we find the mortalities of both larvae and sharks, which therefore have a great impact on
the system’s behavior.

Another important result we can gather from our analytical study concerns the role of
alternative food source for the fish population. We observe that in the absence of the alternative
food source total extinction of the system (1) becomes possible. This however will never happen
in presence of alternative food sources for the fish population. Thus alternative food sources
play a vital role in ensuring coexistence of the acquatic ecosystem.
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Figure 3: The system shows periodic oscillations for g = 0.45.

8 Some remarks on selective harvesting

We add here some considerations on the role of fisheries. Let H denote the harvesting function.
Model (1) gets then modified as follows

dL

dt
= −nL + aSF − bLF

dS

dt
= gL − mS − H(S, F )

dF

dt
= rF

(
1 − F

K

)
+ bLF − aSF − H(S, F ). (11)

This situation corresponds to fishing make with boats and nets which capture reasonably sized
fishes. Thus both S and F will be hunted. To model the fishery activities, let us make a very
simple assumption, namely that H is a linear function of its arguments, so that in the second
above equation H(S, F ) = hS and in the third one, H(S, F ) = hF . By suitably collecting terms
then it is seen that the model (11) can be assimilated to the original model (1) in which the
sharks’ mortality m becomes larger, namely m + h, and the orignal net birth rate r decreases
to the value r − h. Therefore, this type of fishing entails consequences that can be determined
via the simulations of Section 6. Namely observe that with larger mortalities, the first term in
the definition of Δ increases, while the second one being a ratio of two quadratic terms does
not change much. Hence Δ increases and so do L∗ and S∗. From (5) also F ∗ increases, since
its numerator is quadratic. So apparently fishing helps the ecosystem to thrive. But as soon
as m increases past the threshold, m∗ ≡ ag 1

b
, the first term of Δ becomes negative, and the

coexistence equilibrium becomes infeasible, so that the system will suddenly go to extinction.

We consider now a second type of harvesting, namely the fishing of larvae. The model (1)
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Figure 4: The system tends to the stable equilibrium coexistence steady state E∗ for m = 0.2

now becomes

dL

dt
= −nL + aSF − bLF − H(L)

dS

dt
= gL − mS

dF

dt
= rF

(
1 − F

K

)
+ bLF − aSF. (12)

Assuming once again a linear harvesting function, H(L) = hL, fishing the larvae amounts to
making their removal rate n larger, n + h. The long time effects of such situation can therefore
once again deducted via the simulations of Section 6. In this case a larger n makes the second
term of Δ larger, so that this quantity becomes negative, past the threshold n∗ ≡ K(ag−bm) 1

m
,

making once again E∗ infeasible and leading to the collapse of the ecosystem. Although in our
formulation we spoke about sharks and their larvae, these results can be interpreted on fishing of
the small fishes, which is nowadays regulated by law and limited to just a month in the spring,
at least in the Mediterranean. The long term consequences of an indiscriminated fishing in
such situations can be investigated via suitable simulations. The latter can therefore provide
a scientific and rational support for the normative statements on this matter. However, to
have a complete picture of the situation, also harvesting under other assumptions is needed,
such as the more commonly used diminishing return functions, see chapters 1 and 2 of [4], and
postponed to another investigation.

Acknowledgement Research supported by: MIUR Bando per borse a favore di giovani ricer-
catori indiani.
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Figure 5: The system exhibits periodic oscillations for m = 0.1.
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tems along gradients of primary productivity, American Naturalist, 118, 240–261, 1981.

[10] RENSHAW, E., Modelling biological populations in space and time, Cambridge University
Press, Cambridge, UK, 1991.

[11] SAEZ, E., GONZALES-OLIVARES, E., Dynamics of a predator-prey model, SIAM J.
Appl. Math., 59, 1867-1878, 1999.

186 volume 2 (2009), number 2



Aplimat - Journal of Applied Mathematics

Current address

Samrat Chatterjee, Dr.
Dipartimento di Matematica, Universita’ di Torino, via Carlo Alberto 10, 10123 Torino, Italy,
tel. +39-011-670-3449 samrat ct@rediffmail.com

Ezio Venturino, Professor
Dipartimento di Matematica, Universita’ di Torino, via Carlo Alberto 10, 10123 Torino, Italy,
tel. +39-011-670-3449 ezio.venturino@unito.it

volume 2 (2009), number 2 187



Aplimat - Journal of Applied Mathematics

188 volume 2 (2009), number 2



A NEW ACTIVE-SET METHOD FOR LINEAR
PROGRAMMING BASED ON TRANSFORMATION

OF FEASIBLE DIRECTION ALGORITHM INTO
UNCONSTRAINED MINIMIZATION PROBLEM

JURÍK Tomáš, (SK)

Abstract. A new active set algorithm for solving general linear programming problems is
proposed. Its feasible search direction is transformed into the unconstrained minimization
problem using the theory of duality. This transformation enable us to employ some simple
and very efficient subgradient methods for nonlinear optimization. This transformation is
employed only in the case that the projection of the objective value vector to some affine
space is not a feasible direction. In this sense, the presented algorithm is an extension of
a projective method [4]. The behavior and efficiency of the algorithm is demonstrated by
the numerical experiments on the randomly generated problems.
Key words and phrases. linear programming, active set methods, duality, uncon-
strained optimization
Mathematics Subject Classification. Primary 90C05, 90C46; Secondary 90C59.

1 Introduction

The optimization is a natural process: it attracted both theoreticians and practitioners of all
the world since the beginning. The linear programming (LP) is the easiest form among the
huge class of the optimization problems. Many fresh ideas has been tried from its origination
(see [1]). Besides the well known simplex and interior point methods, in the last decades many
different sophisticated algorithms have subscribed to the wide spread of LP algorithms. The
most popular nonstandard algorithms belong to the active-set methods: the aim is to find the
constraints which are active at the optimal solution of the LP problem. Usually their iteration
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points lies on the boundary of the feasible region and they find the feasible direction only using
the active set of the present solution.

The two path algorithm [2] combines the solutions of the primal and the dual problem to
speed up the convergence to the optimal solution. The authors showed that their algorithm
is more than 100 times faster than the simplex method on the randomly generated problems.
The pure active-set method Sagitta is based on the global viewpoint to the LP problem. This
method is based on the observation that an intersection of the hyperplanes which contains the
most-obtuse angles to the objective direction is an accurate candidate to the optimal solution.
Obviously, this is true only in the special cases, but the method exploits the duality theory and
Farkas lemma to gain the optimal solution quickly. Their successful computational results are
remarked in [3].

The newest non simplex-type active set method has been proposed in [4]. Its idea is to find
the feasible direction as the projection of the objective value vector into the space determined
by the active constraints. In the case that this projection is not a feasible direction, the different
feasible direction is obtained as a linear combination of an (unfeasible) projection vector and
some vector which is perpendicular to the objective value vector. The encouraging results on
randomly generated problems were also presented.

The algorithm proposed in this paper significantly improve the previous algorithm. Finding
the feasible direction is transformed into an unconstrained nonlinear minimization problem that
can be solved by the standard subgradient methods very efficiently.

2 The new method

The main result is to present the deterministic algorithm for solving general linear programming
(LP) problems. In the first subsection we propose some basic facts and a notation used, after
that we describe the transformation into the unconstrained optimization problem. At the end
of the main section we present the early numerical results we obtain on the randomly generated
problems.

2.1 Preliminaries

We consider the LP problem in the standard form (constraints are equalities and all variables
are nonnegative)

cT x → max

Ax = b (1)

x ≥ 0

where 0 	= c ∈ Rn, b ∈ Rm are the given vectors and A is the given m × n matrix. In the rest
of the paper we assume that the given problem (1) has an optimal solution and some feasible
solution x0 is available. If this is not the case, we can solve some additional LP problems
similarly to the two-phase simplex algorithm. (To detect the unboundedness of a feasible
problem it is sufficient to show that the dual problem is infeasible.)
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The lower index i of the vector v denote its i-th element, while the upper index usually
denotes the order of iteration points. The proposed algorithm starts from a given feasible point
x0 such that Ax0 = b and x0 ≥ 0 and it generates the sequence {xk}k∈N of some feasible points
which converges to the optimal solution x∗ of the problem (1). The set of all indices

Nk =
{
i ∈ {1, 2, . . . , n} : xk

i = 0
}

. (2)

is called an active set Nk corresponding to the feasible solution xk (We note that here we omit
the equality constraints Ax = b of the problem (1)). The feasible direction vk that force the
current feasible solution xk to the next iteration point xk+1 has to be the projection of the
objective value vector c onto the set

Av = 0, vNk ≥ 0. (3)

The easiest way how to calculate the vector v : ‖v‖ ≤ 1 that fulfills (3) and maximizes cT v
is to set v as a projection vector c to all active constraints, e.g.,

vk =
(
I(n) − AkT

(
AkAkT

)−1
Ak
)

c, where Ak =

(
A

INk

)
. (4)

Here, I(n) denotes the identity matrix of order n and INk denotes the rows of the matrix I(n)
which indices lies in the set Nk in that order. The drawback of the formula (4) is that it is a
correct definition if and only if the matrix Ak is regular. Otherwise we have to calculate the
(force) vector vk in a different manner.

2.2 Unconstrained optimization problem

Our aim in each iteration is to find a vector v such that ‖v‖ ≤ 1 (for simplicity the subscript
k will be omitted) which fulfills (3) and cT v > 0. Then we have cT xk+1 > cT xk, where
xk+1 = xk + λv for some λ > 0.

In this subsection we show how to reformulate this problem into some unconstrained opti-
mization problem. Our reference book for LP theory is [5]. The trick is to relax the condition
‖v‖ ≤ 1 and replace it by ‖v‖1 ≤ 1, e.g., −1 ≤ v ≤ 1. Then the primal-dual pair of the
modified problem for a vector v has a form (N = Nk, B = {1, 2, . . . , n} \ N)

cT v → max
Av = 0
vN ≥ 0

−1 ≤ v ≤ 1

x + y → min
(AT w − x + y)N ≥ cN

(AT w − x + y)B = cB

x, y ≥ 0

(5)

where x, y ∈ Rn are additional variables corresponding to the constraints −1 ≤ v and v ≤ 1
respectively. One can easily see, that the dual problem (5) is equivalent to the unconstrained
minimization problem

fN(w) =
∑
i∈N

max{0, (c − AT w)i} +
∑
i∈B

|(c − AT w)i| → min .
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If we want to apply some standard optimization routines for solving an unconstrained optimiza-
tion problem (i.e. subgradient methods) we have to smoothen the function fN(w) (to make it
differentiable). The simple perturbation yields to the function

fμ,N(w) =
1

2

∑
i∈N

(
(c − AT w) +

√
μ + (c − AT w)2

i

)
+
∑
i∈B

√
(μ + (c − AT w)2

i (6)

for sufficiently small positive parameter μ. This problem can be efficiently solved by the sub-
gradient methods (see [6]).

After we calculated the optimal solution w of the problem (6) which is the reasonably precise
approximation of the dual problem (5) we employ the complementary slackness conditions (c.f.
[5]) to find the corresponding primal optimal solution v. The remaining variables x, y of dual
problem (5) can be calculated from the residual r = c − AT w as

xi =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, for i ∈ N and ri ≥ 0,

0, for i ∈ N and ri ≤ 0,

0, for i ∈ B and ri ≥ 0,

−ri, for i ∈ B and ri ≤ 0,

yi =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ri, for i ∈ N and ri ≥ 0,

0, for i ∈ N and ri ≤ 0,

ri, for i ∈ B and ri ≥ 0,

0, for i ∈ B and ri ≤ 0.

In our case, from the complementary slackness conditions we can easily derive that the optimal
solution v is defined by the rule

vi =

⎧⎪⎨
⎪⎩

1, if ri > 0,

−1, for i ∈ B and ri < 0,

ti, for i ∈ N and ri ≥ 0,

(7)

where t is a solution of a regular linear system such that Av = 0.

2.3 Algorithm

The aforementioned ideas leads to this new algorithm for solving nondegenerate linear pro-
gramming problems. Given a feasible solution x0 of the problem max{cT x : Ax = b, x ≥ 0} we
initialize our algorithm:
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while (true)
construct the sets N = Nk and B defined by (2)
calculate projection vk defined by (4)
if (vk = 0)

solve unconstrained optimization problem (6)
calculate corresponding primal feasible direction vk due to (7)

endif
if (vk = 0)

break (optimality reached in xk)
endif

xk+1 := xx + λvk, λ = min
{

xk
i

−vk
i

: i ∈ {1, . . . , n}, vk
i < 0

}
k = k + 1

endwhile

2.4 Numerical results on randomly generated problems

The proposed algorithm has been experimentally tested to claim its efficiency. We describe our
numerical experiments and present computational results which demonstrate the efficiency of
the new algorithm on randomly generated linear programs. We confine our experiments only
to the dense random problems that were small and medium in size. The calculations have been
made in the environment Matlab 6 performed on a PC with 2 GHz Intel Core c©2Duo processor,
3 GB of RAM and the Windows XP operating system. The generated problems were in the
form

max
{
cT x : Ax = b, x ≥ 0

}
,

where A ∈ Rm×n, c, x ∈ Rn and b ∈ Rm. The matrix A = (aij)m×n and the vector c ∈ Rn were
dense with aij ∈ [−0.3, 0.7], c ∈ [−0.3, 0.7]. In order to facilitate the computations, a vector b
has been set to Ae, where e is all-one vector of size n. Ten problems were generated for each
problem size and the average values are presented. The feasibility and precision tolerance were
set to 10−10. The new algorithm was compared to the implemented procedure linprog in the
environment Matlab. Since the presented algorithm belongs to the active set method, we used
the procedure linprog with ’LargeScale’ option turned off (simplex method).

The first two columns represent the size of the problems - number of constraints and number
of variables respectively, the next columns represent the minimum, maximum and the average
values for the CPU time (in seconds) and the number of iterations for both compared meth-
ods. The last column indicates the average number of solving the unconstrained minimization
problem. From these results can be seen that the calculation time is comparable to the im-
plemented Matlab linprog function. With the higher dimension, this ratio is going better for
the new algorithm and this encouraging empirical observation that can stimulate the further
improvements of the described algorithm.
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linprog new algorithm
size time iter time iter unc.

m n min max avg min max avg min max avg min max avg avg

10 100 0.18 0.28 0.20 100 90 97 0.12 0.79 0.29 91 102 93 2.1
20 100 0.14 0.22 0.16 80 88 83 0.20 0.81 0.49 81 90 84 2.7
30 100 0.13 0.25 0.14 70 82 74 0.25 1.00 0.63 71 77 74 2.8
20 200 0.94 1.02 0.96 183 189 184 0.94 1.67 1.16 184 190 186 2.9
30 200 0.81 0.98 0.85 171 182 176 1.12 2.40 1.56 172 183 177 3.3
40 200 0.75 0.84 0.78 164 172 167 1.64 3.00 2.34 167 177 171 3.7
30 300 2.69 3.28 2.83 271 288 277 2.50 3.54 3.08 273 284 278 3.4
40 300 2.56 2.78 2.66 262 275 268 3.23 6.12 4.28 263 283 270 4.1
30 400 6.23 7.07 6.67 372 386 377 4.48 7.07 5.34 375 391 380 3.8
40 400 5.97 6.28 6.17 362 374 368 5.84 7.89 6.97 363 376 369 3.9

Table 1: Computational results for solving randomly generated LP problems

3 Conclusions

This paper fully describes the new idea of transformation of the feasible search direction, which
is the most difficult (and therefore the most interesting) part of all active set methods. Our
transformations is just slightly relaxation of the projection of the objective value function.
The duality theory and the complementary slackness conditions help us to create a brand new
algorithm for solving nondegenerated linear programming problems. A complete theory for the
new algorithm has not been presented here, its convergence is still an open question. Hoverer,
the early calculations provide a sufficient motivation for further research.
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OBJECT - ORIENTED  PROGRAMMING  LANGUAGES AS 
TOOLS  FOR  FORMULATIONS  OF  SYSTEM  ABSTRACTION 

KINDLER  Eugene,  (CZ), K IVÝ Ivan, (CZ)  

Abstract. The classes that the object-oriented programming languages allow to define 
correspond to exact abstract notions. The instances of classes correspond to exactly behaving 
entities. The so called life rules that some of those languages allow including as integral 
components of classes correspond to algorithms that run in parallel. The life rules can be related 
to a certain abstraction of Newtonian time, which allows formulating exact description of 
dynamic systems, i.e. models of entities that are studied by natural and/or technical sciences and 
even by social sciences and humanities. The sets of classes can represent exact theories. In case 
such a language is also block-oriented, the exact theories can be formulated and handled as 
concepts, too. When the applied language admits the life rules, a certain dynamic development 
of such a theory can be exactly formulated. Moreover, the synthesis of the block orientation 
with the object orientation allows describing dynamic systems that handle exact theories. If the 
applied object-oriented language is consistent and independent of computer essence, it 
represents a true mathematical language, able to be used for describing very complex systems 
(including intelligent ones).

Key words. Object-oriented programming, exact theories, nesting theories, complex 
systems  

Mathematics Subject Classification: Primary 68N15, 68N19, 68N30, 68U01, 68U20; 
Secondary 68T35, 93B07. 

1 Introduction – Development of the Languages of Constructive Mathematics 

Beside the languages of formulas broadly applied by the mathematicians, the constructions 
were in focus of mathematics and their authors tried to design an formal language that could be 
used for exact and simply decipherable describing of such constructions. Already the pupils of 
elementary schools learned a language for declaring Euclidean constructions. Naturally, that 
language was very limited. Nevertheless, it showed a certain way to the further development. Note 
that when phases of the described construction had to be repeated, simple phrases of a natural 
language were applied. Although the natural languages are evidently non-exact tools, the use of the 
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phrases in the description of the constructions was rather limited, when compared with the use of 
natural language in the description of definitions, theorems and their proofs occurring in 
conventional mathematics. The other formal languages used for describing constructions were 
limited, too (e.g. those for solving equations or for analytic computing definite integrals – the forms 
oriented for computation at electromechanical desk top machines can be included). Efforts to 
formulate a language that would be much more general (even universal), i.e. that would be able to 
be used for the description of an essentially larger set of constructions led to inventing abstract 
tools, the commonness of which was paid by illegibility in case of practical applications (sometimes 
rather popular in Czechoslovakia Markovian algorithms [1], lambda calculus, Turing machines, 
general recursive functions etc.). 

Since the end of the World War II, the efforts started from another source, namely from 
programming digital computers. Their programs were representations of true constructions but at 
the first phase, when programming was manually performed in machine code or in similar 
“language” like that of symbolic addresses, the applied tools were as illegible as those mentioned 
above. Nevertheless, the debugging or programs profiting of the physical reality of computers, 
stimulated the further development and unlatched narrow horizons that limited the thinking of those 
using the general tools for construction describing, which had arisen independently of computers. 

Automatic programming soon discovered languages that seemed to be rather universal and 
more legible, like Flowmatic or Mathmatic, introduced to old Univac computers in the mid of the 
sixties of the last century. The main step in the development consisted in a synthesis of arithmetic 
formulas with simple words and phrases of the English natural language. That development 
continued further (let us remind Fortran II. and IV. and Algol 58) and nowadays one can say that it 
was crowned by Algol 60 [2].

2 From Algorithms to Processes and Concepts  

The described development led to the possibility to formulate the definition of algorithms 
working with predefined “standard” entities, like numerical, text or Boolean ones. However, the old 
language used for Euclidean constructions concerned geometrical entities, i.e. something that was 
rather different from standard ones. Some authors tried to overcome that unpleasant situation in a 
certain general sense, namely by introducing data structures. In general, data structure is composed 
of standard entities and possible pointers to other data structures. So languages as COBOL, PL/1, 
ALGOL W, ALGOL 68 or early versions of PASCAL were designed and implemented. The 
general idea rooted in the illusion that an exact abstraction from any concept should be a set of 
standard entities and a priori formulated possible relations.  

But almost contemporarily to the development the just mentioned idea and illusion, another 
development existed, almost neglected by the scholars oriented to programming. This development 
took into account that the entities often behave dynamically in a certain autonomous manner (in a 
metaphor: they live) – such entities are often understood as instances of a concept for which the 
autonomous behavior (“life”) is a proper component of its semantic contents. Most probably, the 
mentioned neglecting rooted in the fact that such entities use to be rather distant from mathematical 
ones, having been studied by sciences other than mathematics and physic. The essential stimulus for 
the development was discrete event simulation. In simulated systems parallel processes exist, which 
have to be mapped as algorithms in the corresponding simulation models. But a projecting of such 
parallel processes to a conventional (monoprocessor) computer leads to a very sophisticated 
algorithm and, therefore, the simulationists invented so called process oriented discrete event 
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simulation languages in order to facilitate the fabrication of such algorithms. The user of such a 
language does not need describe what the computer should perform, but he describes the simulated 
system as a dynamic structure of elements that “live” and the description is automatically converted 
into a program that can run at the concerned computer. The first language of that sort was GPSS [3]. 
It offered describing systems as composed of entities that could enter and leave the system during 
its existence and that are structures of data (so called attributes) and of “life rules” that had form of 
algorithms interleaved with so called scheduling statements, expressing duration of particular 
phases of the “life” and – indirectly – switching among algorithms performed by different entities. 
Rather poor abilities of GPSS provoked further development of the process oriented discrete event 
simulation languages, passing over SOL [4], SLANG [5] etc. to language called initially SIMULA 
and later SIMULA I [6, 7] in order to be distinguished from a much different and later developed 
object-oriented language called SIMULA 67. It is to observe that the title of [6] characterizes 
SIMULA as a language for the description of systems and not for programming. 

Note that not every discrete event simulation languages were process oriented. Among 
popular examples, both main versions of SIMSCRIPT and all versions of GASP can be presented. 

The result of this development consisted in formal languages that offered exact description of 
clusters of concepts concerning in a common target – reflecting a structure and dynamics of a 
certain set of discrete dynamic systems.  

3 SIMULA 67 

In 1967 the first official presentation of a new language SIMULA 67 was presented [8]. This 
language has several essential properties, discussed in the following text. 

(1) It introduced the relation class-subclass, called often subclassing or specialization, which 
reflected the relation of enriching the content of a concept or – inversely – the reduction of the set 
of concept instances. Such a relation is widely used, when a new concept is introduced (“concept A
is defined as concept B for that so and so new properties can be observed”). It is possible to state 
that without that relation the human society (including science, communication and control) could 
not exist. 

(2) It offered a possibility to declare algorithms as components of contents of the classes, to 
give them names and to call them to work for any instance of the concerned class. Later, such 
algorithms were called methods.

(3) It introduced dot notation (called also remote identifying) for expressing attributes and 
methods: A.s represents either attribute s of instance A (in case s is an attribute) or “let A perform s”
(in case s is a method). In the first case, the dot notation serves for expressing what the logicians 
call determination (question: “What s?”, answer “s of A”, i.e. a phrase that is often expressed “A s”
in English and in some other languages). In the second case, the dot notation serves for expressing 
simple phrase (A be its subject and s its predicate). Moreover, the methods can have parameters 
(like procedures) and thus A.s(p) can serve for expressing phrase where A is subject, s predicate and 
p object or complement. That does not exclude other interpretations, where s can be e.g. a copula or 
a preposition.

(4) Methods can be introduced as virtual, i.e. so that they are considered as meaningful, 
supposing their proper content will be declared in subclasses. It can serve to introduce certain sort 
of adaptation to the context, because such a method can adapt its work according to the “sort” of the 
object standing in front of the dot (“sort of A” means the class, of which A is an instance). 
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(5) Life rules can be added to the declaration of any class and may be enriched in declaration 
of any of its subclasses. Calling methods and forming new class instances can occur in the life rules. 

(6) Beside the virtual methods, also virtual tasks of the transition (called go to statements) 
among the components of the life rules are allowed. 

(7) Declarations of classes can be anywhere when declarations of attributes and methods can 
occur. A class that contains such class declarations is called main class and can serve for 
introducing formal theories, offered for manipulation with more than one class and its instances. 

(8) Full block oriented facilities introduced in ALGOL 60 exist in SIMULA 67. For a block, 
not any variable and subprogram can be introduced but also classes. It allows handling with local 
classes, or – viewed in another way – with concepts that are related to a certain context (block) 
while they can differ from concepts that have the same names. 

The introduced properties were included also into a refined definition of SIMULA 67 [9]. 
This language was later presented as international standard [10] and its name was simplified to 
mere SIMULA (when SIMULA I was generally forgotten because its users decided to use SIMULA 
67).

4 Object-Oriented Programming  

In the 80-ies of the 20th century, the properties (1) – (4) were taken as characteristics of the 
object-oriented programming. But already in 1968 one of the authors of SIMULA 67 called the 
mathematicians’ attention to the large horizons that the programming languages disposed by the 
mentioned properties for exact representation of concepts [11]. 

He demonstrated the ideas at SIMULA 67, as in 1968 no other language with properties (1) – 
(4) existed. Nowadays, there are many object-oriented languages and among them popular C++, 
JAVA and newer versions of PASCAL, but it is difficult to consider them as suitable tools for the 
formulation of concepts. The reason is that while SIMULA 67 is completely independent of the 
computer at that it is used, the other languages are bound with it. So they are inconsistent and rather 
distant from being tools for the representation of exact concepts (distant from mathematics), on the 
other hand being nearer to computer science. Let us illustrate the “non-mathematic” properties of 
the most popular object-oriented languages. 

PASCAL, even in its object-oriented versions, has no garbage collector, and so one can let 
liquidate an object to that still some pointers exist. After the liquidation of the object, the memory, 
if required, it needed is given to disposal for possible new objects. Suppose an object A have been 
liquidated but a pointer P to it remained; the segment M of the computer memory, at which A was 
represented, can be used for other purposes. Suppose another object B is then generated, belonging 
to a class different from that of A. And suppose (a part of) M is used for storing B. Then M is 
completely re-structured, the borders between items are in general displaced and when P demands 
some item of A, it obtains a nonsense.

Similarly as PASCAL, C++ has no garbage collector; thus for C++ the same illustration as for 
PASCAL holds. But moreover, C++ is intended as a language suitable for the design and 
implementation of operating systems and the consequence is that C++ has to be sometimes for 
disposal as an autocode. Truly, in case B is an object introduced in a software formulated in C++, 
one can work with the internal (computer) address  used e.g. for the first item of the representation 
of B. In general, when B is an abstraction of something that exists (or may exist) independently of 
the computer at that B is hand,  has no relation to B, moreover,  can have different values for the 
same model running at different computers or even for the same model running at the same 
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computer at different jobs or tasks. Another example can give an opposite step – e.g. determining 
the object stored at a part of computer storage using address 2 .

JAVA is in a certain sense an enlargement of C++ and so the texts written in it are open to 
suffer similarly as that written in C++. Besides, JAVA offers other obstacles related to its bindings 
with the carrying computer hardware, namely concerning the parallelism and so called passports of 
the objects, i.e. with data structures that have only internal, computer-based interpretation related to 
an object (in other words: a passport of an object A tells nothing on the state and context of A 
relating to the world where A is supposed, but only something about the internal state of the 
computer model of A).

The use of the mentioned three popular programming languages as tools for the representation 
of concepts is further disadvantaged by a number of dialects that are broadly applied. The same 
problem exists also for another popular object-oriented language SmallTalk that exists also in 
different variants. Moreover, that language is “self-defined” (defined by means of the concepts 
proper to its own semantics and according to that implemented), which enables its users that by 
making a programming error they damage the whole semantics (and therefore the applicability – 
both as a programming tool and as a tool for concept representation) of the language. At the present 
days, beside SIMULA 67 only BETA [12] seems to be a logically consistent tool for the 
representation of concepts, but its heavy drawback is a great distance of its syntax from both current 
communication conventions in mathematics and natural English.       

The object-orientation of C++ and PASCAL is isolated and not synthesized with the process 
orientation. That causes further obstacles, as the “lives” that are to be modeled (often simulated) at a 
monoprocessor computing system and that are viewed as developing contemporaneously in the 
modeled universe, have to be broken into “events” and considered as carried by hypothetic objects 
that have no pattern in the modeled universe and that are considered as “living” a mere instance of 
zero duration”. Evidently, such languages are not suitable to be used for the concept formulation. 
Note that all simulation tools, the implementation of which is purely based at C++ or Pascal, are of 
the just mentioned sort. Some experiments trying to enlarge those languages to be processed 
oriented must have use of procedures programmed in machine code; beside other, such a manner 
evidently binds the mentioned languages with computer hardware, retreats them from their abstract 
function and draws them near to computer science as mere programming tools. 

It is interesting that essential tools concerning the process orientation of JAVA are made in a 
similar way (by means of machine code or tools that are near to machine code). The basis, i.e. the 
system of threads, is essentially hardware oriented aspect and in case one would like to adapt it for 
representing and/or modeling parallel processes, he has to express a certain way just from hardware 
to this universe [13]. 

The consistent form of the object-oriented languages independent of computer hardware and 
the elegant manner of accumulation of large amount of exact information enabled by using such 
languages stimulated an idea to propose similar tools for “specification languages”, i. e. languages 
that had to serve only for abstract exact description of systems but on which one never hoped to be 
implemented. SIMULA directly served for defining language DELTA [14] (even one of the authors 
of SIMULA was among the authors of DELTA). Nevertheless, neither DELTA nor other proposed 
languages were successful. It is naturally better to describe a system using a language for that an 
implementation (a compiler) exists. Curious information was presented by another author of 
SIMULA in [15]. He described a system for postal package sorting with faults (and therefore many 
cycles) in a specification language and in SIMULA, then he applied the formal definition of the 
specification language semantics in order to get another way to the description in SIMULA. After 
analyzing it, he showed that the normal analysis of a system, which makes a human during 
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preparing the corresponding classes and applying them for writing the simulation model, is 
essentially different from the process of formal “translation”.    

5 Logic Programming  

Logic programming is not so broadly spread as object-oriented one but many of its aspects are 
close to formal logic. Therefore, relating to formulation of exact concepts, logic programming 
demands to be discussed beside the object-oriented one. From that point of view, languages 
facilitating logic programming (PROLOG) seem to serve as a base for formulation of exact 
concepts, but judged from many other points of view, logic programming is not suitable. Let that be 
explained in certain details: 

(a) Although the language of formal logic (of first order predicate calculus) serves as a good 
exact base for introducing and growing mathematical theories axiomatized in conventional way (i.e. 
almost all mathematical theories that arose independently of computing technique), it appears 
heavy-handed and cumbersome for defining processes running over time. 

(b) Exerting a great attention is necessary so that one should not forget some evident aspects 
of real processes based on abstractions of those existing in the real world. As an example, we can 
present the axiom stating that when an object enters a certain state it has to remain in it during some 
positive time interval. If that is not formulated then concepts like the following one is admissible: a 
human who is a patient in a given hospital during time interval (t1,t2), where t1<t2, may occupy one 
bed at time instants the value of which is a rational number, and another bed at time instants the 
value of which is an irrational number. 

(c) The form of such a language allows producing incomplete definitions in the sense that a 
phase of a process (of life rules related to an object or to a class of objects) is formulated but 
description of its continuation is forgotten. 

(d) The computer models based on logic programming run slowly because of a so called 
unification (ordinary connecting bound variables occurring at quantifiers belonging to different 
formulas). 

(e) The present intellectual state of normally educated and thinking persons prefer 
algorithmization to axiomatization. 

6 Handling of World Viewings  

The object-oriented languages that are also process-oriented can be taken as much more 
suitable agent-oriented languages; their great suitability consists in their universality which – among 
other – allows defining other agent-oriented programming tools that are not so general and that are 
often tailored to some limited conception of agents. Naturally, when – like SIMULA – such a 
language is strictly separated from the expressing tools concerning the hardware at that the models 
written in the language can operate, it appears a suitable agent-oriented tool for representation of 
concepts, which is prepared to be used for representing concepts of entities behaving in time and – 
moreover – for representing dynamic objects whose “life” exists contemporaneously to other 
similar objects but cannot be measured as existing in (Newtonian) time (as the quasi-parallel 
sequencing arisen by the generalization of scheduling in time, being implemented in SIMULA and 
BETA).



Aplimat – Journal of Applied Mathematics

volume 2 (2009), number 2 203

Nevertheless, the fresh demands of the exact branches of science, technology and humanities, 
stimulated by vehement development of the computing technique, ask more. Nowadays, two 
sources of those demands seem to be identifiable: 

(i) There are often different opinions on the same subject, where the expressed concepts are 
called in the same manner but the contents of the concepts can differ in different opinions. Such 
phenomenon can be observed in a large spectrum of the world viewings, beginning from simple 
views to the space (one agent uses e.g. Cartesian geometry while another one applied spherical 
one), going over technical statements like fuzziness/equivocality of some future events (an 
example: one supposes it can be expressed in Gaussian terms, another one prefers using of old 
histograms) and ending in complex hypotheses on financial crises, on global warming and energy 
sources. When a process of communication among entities with different opinions on the same 
phenomenon or project should be exactly described (or even modeled), then it is to respect that each 
of such entities has its private fund of concepts, while for describing the communication as a whole 
(or – possibly – for describing a system in that such a communication forms a component) another 
fund (called global) of concepts should be at disposal. Thus the “private” concept funds have to be 
seen as nested in the global fund.

(ii) The objects that come under one’s exact studies are more and more complex and tend to 
be equipped by information processing facilities – either by computing elements (computers) or by 
human thinking, having use of experience, logical derivation and imagining. The human makes 
those activities with support of more or less general notions and the merit of the object-oriented 
programming paradigm stimulated the persons who equip the computing elements of the systems to 
have use of this paradigm. So in both the cases, the exact representation of concepts “private” for 
the thinking humans and/or for the computing physical elements comes out as a suitable and 
efficient technique of the professional manner of studying, modeling and communication. Such 
thinking and/or computing element has a fund of its “private” concepts. The funds should be nested 
inside another fund of concepts, serving for formulation of the whole system in that the computing 
and/or thinking elements exist as its components. That last fund corresponds to the global fund 
introduced in (i) and so it will be called in the further consideration. 

The phenomenon of nesting of private funds in the global ones can be a bit refined and 
concretized.

Firstly, any private fund P is owned by a certain element E and thus it is suitable (and near to 
the reality from that the formulation is abstracted) to consider P as an attribute of E. In general, 
more elements like E can be in the described system S and so it is reasonable supposing E an 
instance of a general concept C of “objects similar to E” (such objects can differ by some attributes, 
abilities or even – as it will be shown later – by some fine details of the private concepts used by 
them). 

Secondly, both the global concepts and the private ones can be formulated as classes 
respecting the paradigm of the object-oriented programming and possibly facilitated by life rules. 
The funds of concepts can be mapped as sets of classes, but some languages (like SIMULA and 
BETA) offer so called main classes, i.e. classes, for which not only attributes, methods and life 
rules can be declared as their contents, but other classes, too (called nested ones). The main classes 
make possible expressing relations among the nested classes they contain and among them and their 
particular instances. 

A simple example can be presented by main class geometry, meant as Euclidian plain 
geometry, which contains classes like that of points, that of lines, that of circles etc. Introducing 
class of circles, one can designate it as defined by its radius and center, where center is an instance 
of the class of points. Among the methods executable by the points, one could introduce the tests 
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like “a point is inside a circle”, “a point is outside a circle”, “a point is at the circumference of a 
circle etc.). Beside the classes nested in geometry, one can introduce attributes pointing to the origin 
of coordinates and to the coordinate axes and – in the life rules – generating of an instance of the 
class of points and two instances of the class of lines and assign them to the just mentioned 
attributes pointing to the coordinate system components. As the computation of real values is 
limited by the finite length of the computer word, it is difficult exactly to test e.g. whether two 
points are in geometrical sense equal, and so class geometry should be defined as having a real 
attribute, e.g. epsilon, serving for tests like a point is equal to another point means that the distance 
between both the points is less than epsilon. The presented example can be simply changed to that 
concerning a production system or a transport one in place of the Euclidean plane. 

Thirdly, class geometry is an efficient stimulus for considering a main class as a formal 
theory. In case a main class G is carried as an attribute by an object it represents a situation that the 
object is a carrier of a certain sort of thinking that conforms to theory G. Let us consider a system S
containing elements that carry theories (e.g. persons or machines that plan some moves and thus use 
class geometry). Then S can be described using a main class that may be interpreted as another 
theory T. The theories like G are then nested into T in the sense that T concerns (beside others) 
entities carrying by their own theories like G. If one quests for other scientific tools able to study 
theories of entities that carry other theories, only theoretical arithmetic of the natural numbers offers 
that tool with its technique of gödelisation. Evidently, such a way is so elementary that every idea 
on its practical application is an illusion. Some applications, namely for the simulation of 
anticipatory systems that use their own simulation models to anticipate possible future 
consequences of their decisions, were indicated in [16].

7 Blocks and Their Impact  

Already ALGOL 60 was equipped by the whole apparatus of blocks [2]. The block is a part of 
algorithm that is able to manipulate with an entity that it inaccessible outside that part. In ALGOL 
60, such an entity could be a procedure or a variable. Such entities were called entities local (more 
precisely: global in the block), while the other entities (accessible also outside the block) were 
called global (more precisely: global for the block). The first reason to introduce local entities was 
storage economy (the local entities could be removed from the operation memory when the 
algorithm operated outside the block), but soon other facilities of them were discovered:

( ) A description of an algorithm can contain more than one block so that its run can be 
present at least in one of them. When the run is so in a block it is a certain (very poor) image of a 
“special phase of the algorithm’s real existence, during which it can use as special thinking tools the 
global entities”. The same name can be used for identifying a local entity in a block and for 
identifying a local entity in another block. Both the denoted entities are semantically different and 
that may be an image of a situation that the algorithm “respects different abstractions of a thing 
denoted by the name during each of the phases of thinking”. 

( ) The operation component of a block is composed of statements; a block is viewed as a 
statement, too, and therefore a block A can contain another block B among its components. Then B
is called a subblock of A and the entities local in A turn global for B. In case an entity local in A has 
a name used for an entity local in B, a so called name conflict takes place. For such a situation, 
ALGOL 60 introduced a rule, according which the name denotes the entity local in B; the 
consequence followed, that the entity global for B carrying the same name is inaccessible in B.
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( ) When the algorithm run entered a block, a special internal structure called block instance
was generated so that it carried entities local in the block. This structure was used only inside the 
compiled program and otherwise it was hidden. When the algorithm run left the block, the block 
instance was liquidated. But already according to the rules of ALGOL 60, it was possible that when 
the algorithm run was inside a certain block, it could enter the same block anew (it could happen 
e.g. in case of recursive calling procedures). In such a case each of the entry into the block caused 
the origin of a block instance and so more than one instance of the same block could exist 
contemporarily.  

The whole apparatus of block handling was fully accepted into the simulation language 
SIMULA I (see above) and then into the object-oriented programming language SIMULA 67. For 
the last language, the following enlargements of the block apparatus appeared as natural and were 
introduced: 

( ) As a local entity introduced for a block, a class can figure. Of course, the instances of such 
a class are meaningful only inside the block. The block with such a local class may be viewed as a 
“thinking” phase of the algorithm, using the class as a “private” concept. 

( ) As the life rules have form of algorithms, the blocks mentioned in ( ) were at disposal to 
represent thinking phases of the objects. More than one instance of the same class can exist and 
even be inside the same block (thinking phase). In such a case, for each of the class instances its 
“private” corresponding block instance is formed. Depending on the entities global for such a block, 
the class instances can differ and so different opinions of the “discussing” instances can be 
represented.

( ) The blocks ordered in life rules similarly as in ( ) can represent different thinking phases 
of the “life” of an instance. The homonymous classes local in such blocks may represent changes or 
especially development in the instance’s thinking  

( ) The best description of a system S as a whole is a block B in that the classes of the 
elements of S figure as local classes. Let C1, C2,… be such local classes. In case the life rules of 
some of them, suppose C1, contains a block b, in which also classes like C1, C2,… are introduced 
as local, b might represent a “reflecting phase of C1’s life”, i.e. as a phase when an instance of C1
should something decide – often with respect to some future consequences – and it imagines (or – if 
it is a computer – simulates) the consequences of different variants of the decision and chooses the 
optimal one.  

( ) In such a case, b is nested in B similarly as mentioned in ( ). Nevertheless, the so called 
dot notation, offered by SIMULA, enables surmounting the name conflicts and handling together 
the instances belonging to both the blocks (the main idea consists in transforming blocks to classes, 
some details are outlined in [17]). Note that this practice come to be fecund namely in case the 
studied systems are anticipatory ones in the week sense [16, 18]. 
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VISCOELASTICITY MODELS
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Abstract. In this article we consider an application of the fractional calculus in the
theory of viscoelasticity. First we give a brief survey of the important formulas of the
fractional calculus and we mention an introduction into the classical viscoelasticity. Then
we sketch main ideas of fractional viscoelasticity and finally we focus on a fractional model
and derive its step response functions.
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1 Fundamentals of the Fractional Calculus

Fractional calculus is a mathematical discipline dealing with the so-called differintegrals (parti-
cularly fractional derivatives and fractional integrals). Differintegral is a natural generalization
of the classical integral and derivative. There are many ways how to define it, but we are going
to recall and employ here the Riemann-Liouville approach only. For more detailed information
see [1] or [2].

Definition: Let a, T, α be real constants (a < T ), n = max(0, [α]+1) and let f(t) be an integrable
function on [a, T ). For n > 0 we additionally assume that f(t) is n-times differentiable on [a, T )
except for a set of measure zero. Then the Riemann-Liouville differintegral of a function f(t)
is defined for t ∈ 〈a, T ) by the formula:

Dα
af(t) =

1

Γ(n − α)

dn

dtn

∫ t

a

(t − τ)n−α−1f(τ) dτ, (1)

where Γ is the Euler Gamma function.
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The main properties of differintegral we need in this article are their linearity and compo-
sition rules. The Riemann-Liouville definition uses only convolutions and classical derivatives,
hence under some assumptions implied by the classical calculus we may write:

Dα
a

∞∑
k=0

ckfk(t) =
∞∑

k=0

ckD
α
afk(t), ck ∈ R. (2)

Composition rules are a little more complicated and have the following form:

Dα
a

(
Dβ

af(t)
)

=

{
Dα+β

a f(t), α ∈ R, β ≤ 0

Dα+β
a f(t) −

∑m
k=1 Dβ−k

a f(t)
∣∣
t=a

(t−a)−α−k

Γ(1−α−k)
, α ∈ R, β ≥ 0

. (3)

Next let us look at the differintegrals of some functions. One of the most important functions
used in fractional calculus is a power function because the differintegral of the power function
remains still a power function. Hence, we may say that differintegration of the power function
is analogous to multiplication with another power function. It holds

Dα
a (t − a)β =

Γ(β + 1)

Γ(β − α + 1)
(t − a)β−α, α ∈ R, β > −1. (4)

Other important function is the Mittag-Leffler function playing a very important role in the
theory of linear fractional differential equations. It is defined by the relation

Eμ,γ(t) =
∞∑

k=0

tk

Γ(μk + γ)
, μ, γ ∈ R, μ > 0. (5)

We can easily see that the case μ = 1 and γ = 1 coincides with the classical exponential. The
fractional analogy to the well-known equation y′(t) = y(t) and its solution y(t) = et is provided
by the function y(t) = tα−1Eα,α(tα) solving the fractional differential equation Dα

0 y(t) = y(t).
Hence we sometimes speak of generalized exponential instead of the Mittag-Leffler function.

More often we need a differintegral of a product of a function of Mittag-Leffler type and a
power function, which can be calculated term by term via the formula (4)

Dα
0

(
tβ−1Eμ,β(λtμ)

)
= tβ−α−1Eμ,β−α(λtμ) α, μ, λ ∈ R, β > 0. (6)

The Laplace Transform

Similarly to the classical theory, the Laplace transform is a very powerful instrument for solving
linear fractional differential equations with constant coefficients. Hence we need to know the
Laplace image of the differintegral

L{Dα
0 f(t), t, s} = sαF (s) −

n∑
k=1

sn−kDα−n+k−1
0 f(t)

∣∣
t=0

. (7)
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In the end of solving process we calculate the inverse transform of the solution. At this
moment we appreciate a knowledge of the formula

L
{

tαm+β−1E
(m)
α,β (atα), t, s

}
=

m! sα−β

(sα − a)m+1
, (8)

where E
(m)
α,β (atα) denotes mth-derivative of the Mittag-Leffler function according to the para-

meter a. This relation can be proved again term by term.
In this paper we will need also the formula for the Laplace transform of a power function

L{tr} =
Γ(r + 1)

sr+1
, r > −1. (9)

2 Classical Viscoelasticity

Viscoelasticity is a scientific discipline describing the material’s behaviour via two physical
quantities - stress σ(t) and strain ε(t). The stress is the average amount of force per unit area,
the strain is the geometrical measure of deformation representing the relative displacement
between particles in the material. Various models differ from each other in the way how to
relate them.

To illustrate the behaviour of viscoelasticity models we consider a body in two situations.
First we discuss the effect of sudden deformation - the strain function is described by the
Heaviside unit step, ε(t) = H(t). The stress appropriate to this strain of the body is called
the relaxation modulus and we denote it G(t). The other interesting situation is the effect of
sudden stress, i.e. the stress is described by the Heaviside unit step, σ(t) = H(t) and we are
curious about the strain response called the stress creep compliance and denoted by J(t). We
usually use a common name “response functions” or “responses” for the functions G(t) and
J(t).

There are two basic models. The first one is the ideal solid, also called Hooke’s element,
with one parameter E - elastic constant. It is symbolized by a spring and it is described by the
formula

σ(t) = E ε(t). (10)

The second one is the ideal fluid, called Newton’s element, where the characteristic parameter
is viscosity η. The symbol is a dashpot and the appropriate relation is

σ(t) = η
dε(t)

dt
. (11)

For these models we get the relaxation moduli GH(t), GM(t) and stress creep compliances
JH(t), JM(t) simply by substitution into the formulas (10) and (11) (see figures 1 and 2).

We can see that the relaxation modulus in Hooke’s model is constant for t > 0, so there
is no stress relaxation which is expected according to experiment. On the contrary, the stress
relaxation occurs too fast (we may say immediately) in the case of Newton’s model. Now let
us look at the stress creep compliances. Hooke’s model again keeps a constant value, Newton’s
one is more problematic because proportions of the body increase linearly to the infinity.
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Figure 1: The relaxation moduli for ideal solid
(E = 1) and ideal fluid (η = 1).

Figure 2: The stress creep compliances for ideal
solid (E = 1) and ideal fluid (η = 1).

Obviously both models have serious problems with the description of the reality. In classical
viscoelasticity we usually use serial (Maxwell’s model) and parallel (Voigt’s model) combinations
of these two simple models for getting a better model. The responses of Maxwell’s and Voigt’s
models are plot in figures 3 and 4. There is an improvement, but we are still unhappy about
the relaxation modulus of Voigt’s model and the stress creep compliance of Maxwell’s model.

Figure 3: The relaxation moduli for Maxwell’s
and Voigt’s models (constants E, η are equal to
1).

Figure 4: The stress creep compliances for
Maxwell’s and Voigt’s models (constants E, η are
equal to 1).

The quality of the model increases with the number of used elements. Nevertheless there
are still problems like a finite value of the relaxation moduli at t = 0 and the discontinuity of
the stress creep compliance at t = 0. These difficulties can be reduced by adding more new
elements.

3 Fractional Viscoelasticity Models

Fractional calculus brings new possibilities into modelling material’s properties because the
order of derivative plays a role of another parameter.

The idea is simply to take Hooke’s and Newton’s models and to realize that behaviour of
real materials usually ranges between those two models. Hooke’s model represents the zero
derivative term and Newton’s one corresponds with the first derivative term. Therefore a term
with α-derivative (0 ≤ α ≤ 1) is an intuitive generalisation and it is called Blair’s model.
There are three parameters - the order of differintegration α and constants E, τ forming one
multiplicative constant (it is splitted just due to dependence on α). Its schematic symbol and
its formula are
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σ(t) = EταDα
0 ε(t), τ =

η

E
. (12)

From the physical point of view we should choose a lower bound of differintegration in minus
infinity because then we would include the whole history of the material. But we assume all
quantities zero for t ≤ 0, hence we may use the lower bound equal to zero.

Figure 5: The relaxation moduli for Blair’s
model for various α (E = 1, τ = 1).

Figure 6: The stress creep compliances for Blair’s
model for various α (E = 1, τ = 1).

We can see from the graphs of the relaxation moduli and the stress creep compliances on
figures 5 and 6 respectively that even this simple model provides the stress relaxation, the
infinite value of the stress at t = 0, the continuity of the stress creep compliances and also their
slower growing for greater t.

Of course, the description through presented power-laws is not always sufficient and we
again use various combinations of Blair’s elements. Now let us introduce one of them - two
Blair’s in series, so-called generalized Maxwell’s model.

Figure 7: The schematical representation of the gen-
eralized Maxwell’s model.

Obviously the stress is the same on both elements (σ1(t) = σ2(t) = σ(t)) and the total
strain is given by the sum ε(t) = ε1(t) + ε2(t). Hence we can write equations of this system in
the form

σ(t) = E1 τα
1 Dα

0 ε1(t), (13)

σ(t) = E2 τβ
2 Dβ

0 ε2(t). (14)
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Let us assume without loss of generality that α > β and apply the operator Dα−β
0 to the

equation (14). According to the composition rule (3) we get

Dα−β
0 σ(t) = E2 τβ

2 Dα
0 ε2(t) + E2 τβ

2 Dβ−1
0 ε2(t)

∣∣
t=0

tβ−α−1

Γ(β − α)
. (15)

The last term contains the initial condition for the strain but we postulated at the beginning
of this section that all quantities are zero for t ≤ 0. Hence this term disappears. The sum of
the equations (13) and (15) gives the formula for this model

1

E1τα
1

σ(t) +
1

E2τ
β
2

Dα−β
0 σ(t) = Dα

0 ε(t). (16)

Let us note that the order connected with σ(t) is always less than the order incident to ε(t) in
the generalised Maxwell’s model.

The derivation of the step responses GGM(t), JGM(t) uses the Laplace transform. First let
us calculate the relaxation modulus GGM(t). We substitute ε(t) = H(t) into (16) and according
to formula (4) we arrive at

1

E1τα
1

σ(t) +
1

E2τ
β
2

Dα−β
0 σ(t) =

t−α

Γ(1 − α)
.

Now we apply Laplace transform, particularly the formulas (7) and (9):

1

E1τα
1

σ̂(s) +
1

E2τ
β
2

(
sα−βσ̂(s) − Dα−β−1

0 σ(t)
∣∣
t=0

)
= sα−1.

Again we can put Dα−β−1
0 σ(t)

∣∣
t=0

= 0 and then we express the Laplace image of the stress:

σ̂(s) =
E2τ

β
2 sα−1

sα−β +
E2τβ

2

E1τα
1

.

The inverse Laplace transform of the σ̂(s) is relaxation modulus GGM(t) and we get it via
relation (8):

GGM(t) = E2τ
β
2 t−βEα−β,1−β

(
−E2τ

β
2

E1τα
1

tα−β

)
. (17)

The situation is even more simple for derivation of stress creep compliance. We substitute
σ(t) = H(t) into equation (16) and we can directly apply the differintegral D−α

0 . We use only
formulas (3) and (4) to obtain

1

E1τα
1

+
1

E2τ
β
2

t−α+β

Γ(1 − α + β)
= Dα

0 ε(t),

1

E1τα
1

tα

Γ(1 + α)
+

1

E2τ
β
2

tβ

Γ(1 + β)
= ε(t) − Dα−1

0 ε(t)
∣∣
t=0

t−α−1

Γ(−α)
.
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The last term again disappears due to zero initial condition, hence we obtain the stress creep
compliance

JGM(t) =
1

E1τα
1 Γ(1 + α)

tα +
1

E2τ
β
2 Γ(1 + β)

tβ. (18)

Let us discuss possibilities provided by the generalized Maxwell’s model. First let us keep
β = 0, i.e. we examine the case of one Blair’s and one Hooke’s element in a series. It is evident
from figure 8 that decreasing parameter α provides a very effective way how to reduce the stress
relaxation effect, and we also see that β = 0 causes the boundedness of the relaxation moduli.
In figure 9 we observe a flattening of the stress creep compliances with lowering parameter α.
The negative effect of zero β is discontinuity of those responses.

Figure 8: The relaxation moduli for the gener-
alized Maxwell’s models - influence of α (all con-
stants are equal to 1 except α, β).

Figure 9: The stress creep compliances for the
generalized Maxwell’s models - influence of α (all
constants are equal to 1 except α, β).

Figure 10: The relaxation moduli for the gener-
alized Maxwell’s models - influence of β (all con-
stants are equal to 1 except α, β).

Figure 11: The stress creep compliances for the
generalized Maxwell’s models - influence of β (all
constants are equal to 1 except α, β).

Now we fix the parameter α on the value 1, so we are interested in the case of one Blair’s
and one Newton’s element in series. The appropriate response functions are plotted in figures
10 and 11. Obviously increasing parameter β causes faster stress relaxation and its non-zero
values bring unboundedness into a neighbourhood of the point t = 0. The non-zero parameter
β also makes the stress creep compliances to be continuous. On the other hand the parameter
α = 1 keeps the behaviour of those responses to be almost linear for t � 1 which is not desired.

Clearly the limit values one, zero of the parameters α, β respectively have a negative influ-
ence to response functions. Hence we will consider various values of α, β but we will keep their
difference constant (still α > β).
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Figure 12: The relaxation moduli for the gen-
eralized Maxwell’s models - influence of α and β
with constant difference (all constants are equal to
1 except α, β).

Figure 13: The stress creep compliances for the
generalized Maxwell’s models - influence of α and
β with constant difference (all constants are equal
to 1 except α, β).

The appropriate curves are depicted in figures 12 and 13. The lines seem to be mixed up at
the first glance, but there are some regularities. We see that for relaxation modulus decreasing
α causes slower stress relaxation for t � 1, we may say “fat tails”, whereas decreasing β effects
faster stress fall for t � 1. The situation about the stress creep compliance is much more
simple, because it behaves like ∼ tα for t � 1 like ∼ tβ for t � 1.

Like in classical viscoelasticity, a greater number of parameters enables better adaptation of
the shape of the curves to the reality. The difference is that we need a less number of elements
with fractional models for qualitatively suitable results.

4 Conclusions

In this paper we discussed one of the most important application of the fractional calculus, the
theory of viscoelasticity. In general the fractional calculus provides a very interesting instrument
for modelling because the order of differintegration plays a role of a new parameter. That is the
“macroscopic” reason why we use this theory in viscoelasticity. On the other side there exists
a microscopic point of view which also arrives to fractional models as we can see e.g. in [3].

We introduced the complete macroscopic derivation of the generalized Maxwell’s model,
and we described its behaviour, particularly the effects of the change of parameters α, β on the
response functions G(t) and J(t).

In [3] there is also mentioned that more general fractional models are very successful in
describing viscoelastic properties of many polymeric materials, especially their relaxation be-
haviour. Some information about this phenomena and also about another application of the
fractional calculus can be found e.g. in [1], [2].
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STABILISATION  OF  MEAN  AND  VARIANCE 
 FOR  NONSTATIONARY  PROCESSES 

KVAPIL  David, (CZ)  

Abstract. Nonstationary processes occur in stochastic analysis of technological data. This 
problem can be solved by several methods. We resume some approaches to the task of 
nonstationary process and shortly illustrate process of stochastic analysis in technometrics. We 
will construct GARCH model for technological data and demonstrate its creation in MATLAB.  

Keywords. Stochastic modeling, Box – Jenkins (S)AR(I)MA model, nonstationary process, 
GARCH model  

1 Introduction 

Analysis of technological data indicates a high-frequency time series with changeable variance, we 
can speak about volatility. There are many problems in practice classic linear (S)AR(I)MA models 
(Box – Jenkins methodology), which allow only correlation dependence. The variability relates to 
the autocorrelation. We can understand the change of volatility as the change of the time series 
regime which is determined by different deterministic and unsystematic factors.  
For empirical daily time series there are usually not satisfied conditions of linear modelling 
(homoskedasticity and normality). After the graphical analysis we can see that the data comes from 
leptokurtic distribution (fat tails, excess kurtosis). The first conception was proposed by Engle 
(1984) – his ARCH model supposed conditional variance. The requirement of normality was 
preserved.

2 Nonstationary mean and variance 

For nonstationary processes in mean we distinguish a deterministic trend and a stochastic trend. For 
the deterministic trend nonstationariness is perceived as a function of the time. For modeling we use 
a polynomial or periodic trend, respectively 
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f t t t .

For the Box – Jenkins ARMA models  

1 1 1 1, :  ... ...t t p t p t t q t qARMA p q Y Y Y ,

where 20,t WN , expressed using backshift operator t tB Y B , is requested causal 

process, i.e. each of the roots of polynomial 11 ... p
pz z z  is outside the unit circle. If 

any root is situated on the unit circle, we speak about nonstationary process with the stochastic 
trend. If any root is situated inside the unit circle, we speak about the nonstationariness of explosive 
type. [9]  
We can reduce the stochastic trend using the difference operator 

1 1t t t tY Y Y B Y ,

22
1 1 22 1t t t t t t t tY Y Y Y Y Y Y B Y ,

1 2 ... 1 1
1 2

d dd
t t t t t d t

d d
Y Y Y Y Y B Y .

Nonstationary process with the stochastic trend is called integrated ARIMA( , ,p d q ) model, we can 
write

, , :  1 d
t tARIMA p d q B B Y B .

Note that the number d  may not be integer; then d  is called the fractional parameter, we work with 
the fractional difference and we have the fractional integrated process ARFIMA( , ,p d q ). [3] 

The non-stable variance process can be reduced by the Box – Cox transformation or power 
transformation, respectively (for 0tY )

1 for 0,

ln for 0,
t

t
t

Y
Z

Y

for  0,
ln for  0.

t
t

t

Y
Z

Y

If random variables tY  are not positive, we can use the following transformations 

1
for 0,

ln for 0,

t

t

t

Y a
Z

Y a

1
sgn for  0,

sgn ln for  0.

t
t

t

t t

Y
YZ
Y Y

Note that for 0tY  (or near zero) we can make any transformation only with the knowledge in 
significant risk for degradation the time series and incredible final model. Beyond the power 
transformation is not continuous for 0 ; it is necessary to keep away from small nonzero . [8] 
The estimation of the transformation parameter is performed using the maximum of logarithm of 
likelihood function 
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ˆln 1 ln
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n
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nl y .

All  satisfy
21
12

ˆ 1l D l

are situated in the confidence interval. [9] 

3 GARCH modelling 

An alternative approach is the modelling of processes with changeable regime – TAR (Threshold 
Autoregressive), MSW (Markov Switching) or ARCH/GARCH (Generalized Autoregressive 
Conditional Heteroskedasticity) models.  
The GARCH volatility model employs conditional mean and conditional variance. The conditional 
variance is a linear function of values 2 2 2

1 2, ,...,t t t p  for linear volatility models. Nonlinear models 
are able to represent certain asymmetric events (e.g. leverage effects). Basic linear models are 
ARCH( q ) and GARCH( ,p q ). ARCH( q ) model is  

2 2 2 2
1 1 2 2 ...t t t q t q ,

where 0  and 1,..., 0q . GARCH( ,p q ) model is  

2 2 2 2 2 2 2
1 1 2 2 1 1 2 2... ...t t t q t q t t p t p ,

where 0p , 0q , 0 , 0i  for 1,...,i q , 0j  for 1,...,j p .

Other linear models are IGARCH, FIGARCH, GARCH-M, nonlinear models are EGARCH, 
IEGARCH, FIEGARCH, GJR-GARCH, QGARCH, SV model, etc. [3] [4] [6] 
The general ARMAX( , ,p q n ) model for the conditional mean  

,
1 1 1

p q n

t i t i t j t j k t k
i j k

Y C Y A ,

where ,t kA  is an explanatory regression matrix in which each column is a time series, applies to all 
variance models. 

The process of construction of volatility models is as follows: [3] 
i) Fitting linear or nonlinear level model is created for the time series. 
ii) Null hypothesis of conditional homoskedasticity is tested against alternative hypothesis of 
conditional heteroskedasticity of linear or nonlinear type. 
iii) Parameters of linear or nonlinear selected model of conditional heteroskedasticity are estimated. 
iv) Fitness of selected model is verified by diagnostic tests. 
v) The model is modified if it is necessary. 
vi) The model is used for description or prediction. 
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4 Analysis of technological data 

We shortly demonstrate the stochastic analysis of technological data from the thermal power 
station. In the next figure there is the process of temperature of output warm servis water during one 
day.

For the data vector (denoted A) we create MATLAB script BJmodel.m. It realizes the identification 
of Box – Jenkins model. We obtain 
>> BJmodel(A) 
vyberovy prumer:  55.0193 
vyberovy rozptyl:  3.60564 
hodnoty FPE kriteria pro jednotlive ARMA modely:
1.0e+003 * 
   3.030731706022   0.909115365313   0.324244052345   0.166364044939
   0.001631776099   0.001634188044   0.001636436964   0.001638666986
   0.001634048368   0.001636455241   0.001638704943   0.001637861626
   0.001637473969   0.001639879685   0.001641482159   0.001642407768

From generated matrix of values of FPE criterion we can choose ARMA(1,0) because the value of 
the element in position (2,1) is minimal. The correlogram is in the next figure. 

The periodogram is in the next figure, there is not indicated any significant frequency. 
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We create MATLAB script ARMAmodel.m for verification ARMA(1,0) model. We obtain 
>> ARMAmodel(A,1,0) 
Discrete-time IDPOLY model: A(q)y(t) = e(t) 
A(q) = 1 - 0.9731 (+-0.01949) q^-1
Estimated using ARMAX from data set yc
Loss function 1.58739 and FPE 1.5896
Sampling interval: 1

hodnota Portmonteau statistiky:  Q = 251.591 
kriticka hodnota :  krit = 52.1923 

The value of Portmonteau statistic is 251.591Q  and it is much higher then the critical value of 
the test 52.1923k . We create the histogram of measured data and compare it with the normal 
distribution.

We can see that we have data from the leptokurtic distribution. Now we perform Jarque – Bera test 
(jbtest) of normality in MATLAB.  
>> [h,p,jbstat,krit] = jbtest(A, 0.05); 
>> [h,p,jbstat,krit] 
ans = 
  1.0000000000000   0.0010000000000   227.0430989943586   5.9495166571438 
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The test rejects null hypothesis at the 5% significance level, our data does not come from the 
normal distribution. 
We create MATLAB script testnezprvku.m (test of independence). It performs the test of 
autocorrelation of sample elements.  
>> testnezprvku(A) 
*** H0: neni autokorelace ***
H0 zamitame - existuje autokorelace 
testovaci statistika:  61.8415
hranice kritickeho oboru:
  -1.961611612000120   1.961611612000120 

The test rejects null hypothesis at the 5% significance level, the autocorrelation exists in our 
sample. 
Now we differentiate our sample and we will work with the series of the first differences.  
>> A1=diff(A); 
On the next figure (plot of A1) we can see the clusters of volatility. 

We use archtest in MATLAB for test of presence ARCH effects (heteroscedasticity, leptokurtic 
distribution, leverage effect). 
>> [H,p,stat,krit] = archtest(A1-mean(A1),[1 2 3 4 5 10 15 20]', 0.05); 
>> [H,p,stat,krit] 
ans = 
 1.000000000000 0.025741377174   4.9733075496981  3.841458820694 
 1.000000000000 0.005051016933  10.576331366106  5.991464547108 
 1.000000000000 0.010148249556  11.313022268465  7.814727903251 
 1.000000000000 0 139.05570911226  9.487729036781 
 1.000000000000 0    152.31277873385 11.07049769351 
 1.000000000000 0    155.15336092862 18.30703805327 
 1.000000000000 0    159.15625510344 24.99579013972 
 1.000000000000 0     161.92284873141 31.41043284423 

The test rejects null hypothesis at the 5% significance level, the conditional variance exists in our 
model for the values q 1,2,3,4,5,10,15 and 20. 
Now we use likelihood ratio hypothesis test for estimated GARCH( ,p q ) models. 
>> spec11 = garchset('P',1,'Q',1,'Display','off'); 
>> spec21 = garchset('P',2,'Q',1,'Display','off'); 
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>> spec12 = garchset('P',1,'Q',2,'Display','off'); 
>> spec22 = garchset('P',2,'Q',2,'Display','off'); 
>> [coeff11,errors11,LLF11] = garchfit(spec11,A1); 
>> [coeff12,errors12,LLF12] = garchfit(spec12,A1); 
>> [coeff21,errors21,LLF21] = garchfit(spec21,A1); 
>> [coeff22,errors22,LLF22] = garchfit(spec22,A1); 

>> [H,pValue,Stat,CriticalValue] = lratiotest(LLF12,LLF11,1,0.05); 
>> [H,pValue,Stat,CriticalValue] 
ans = 
 1.0000000000000 0.00000000000161 49.9072579043968 3.8414588206941 

>> [H,pValue,Stat,CriticalValue] = lratiotest(LLF12,LLF21,1,0.05); 
>> [H,pValue,Stat,CriticalValue] 
ans = 
 1.0000000000000 0.00000000000161 49.9072577831202 3.8414588206941 

The more formal approach to the choice of order of the model is using certain criterion function. 
The most common and widely used are FPE (Final Prediction Error, 1969), AIC (Akaike 
Information Criterion, 1974), AICC (corrected AIC), BIC (Bayesian Information Criterion, 1978), 
SBC (1978) etc. [9] 

We create MATLAB script GARCHmodel.m which generates matrices of values of AIC and BIC 
criteria, respectively.  

>> GARCHmodel(A1,2) 
hodnoty AIC kriteria pro jednotlive GARCH modely:
  1.0e+003 * 
   4.220753025055129   4.172845767150732 
   4.222753024933852   4.172967839307103 
hodnoty BIC kriteria pro jednotlive GARCH modely:
  1.0e+003 * 
   4.241839839882679   4.199204285685170 
   4.249111543468290   4.204598061548427 

Now we have GARCH(1,2) model as the best option. We prepare MATLAB structure for this 
model and then we estimate all parameters of the model. 
>> spec = garchset('P', 1, 'Q', 2) 
>> [coeff,errors,LLF,eFit,sFit] = garchfit(spec,A1); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
   Diagnostic Information

Number of variables: 5 

Functions
 Objective:                       garchllfn 
 Gradient:                        finite-differencing 
 Hessian:                         finite-differencing (or Quasi-Newton) 
 Nonlinear constraints:           armanlc 
 Gradient of nonlinear constraints:    finite-differencing 

Constraints
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 Number of nonlinear inequality constraints:  0 
 Number of nonlinear equality constraints:     0 
 Number of linear inequality constraints:    1 
 Number of linear equality constraints:      0 
 Number of lower bound constraints:          5 
 Number of upper bound constraints:          5 

Algorithm selected 
   medium-scale 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 End diagnostic information

>> garchdisp(coeff,errors) 
  Mean: ARMAX(0,0,0); Variance: GARCH(1,2) 
   Conditional Probability Distribution: Gaussian 
  Number of Model Parameters Estimated: 5 

                                      Standard              T
  Parameter            Value           Error             Statistic
 -----------         -----------     ------------       ----------- 
          C          -0.011966       0.01614              -0.7413 
          K 0.0015184     8.0975e-005      18.7519 
   GARCH(1)    0.96139         0.0012091         795.1219 
    ARCH(1)      0                0.010684          0.0000 
    ARCH(2)      0.03861         0.01047           3.6876 

Finally, we have GARCH(1,2) model  
0.011966t tY ,

2 2 2
1 20.0015184 0.96139 0.03861t t t .

Now we simulate the data by the model above. The residua and conditional standard deviation are 
plotted in the next figure. 
>> [e,s] = garchsim(coeff,1000); 
>> garchplot(e,s) 



Aplimat – Journal of Applied Mathematics

volume 2 (2009), number 2 227

Lastly we will predict with the horizon 50 samples and compare it with the results of simulation of 
our model. We will use Monte Carlo simulation of forecast. 
>> hor=50; 
>> [sigmaForecast,meanForecast,sigmaTotal,meanRMSE] = 
garchpred(coeff,A1,hor);
>> nPaths=1000; 
>> [eSim,sSim,ySim] = 
garchsim(coeff,hor,nPaths,0,[],[],eFit,sFit,A1(end));

5 Conclusion 

Our result is not a product of a completed project; it is only a part of running partial problem of 
modeling and prediction of consumption of heat energy. GARCH models are commonly used and 
often applied in econometrics. Our aim is to demonstrate how to use these stochastic models in 
technometrics.  
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PARALLEL POSIX THREADS BASED
ANT COLONY OPTIMIZATION

USING ASYNCHRONOUS COMMUNICATIONS

LUCKA Maria, (SK), PIECKA Stanislav, (SK)

Abstract. In this paper we study parallel Posix threads based implementation of Ant
Colony Optimization for solving the Vehicle Routing Problem. The algorithm is based on
a homogeneous multi-colony approach and uses asynchronous communication in finding
solutions. The aim of such approach is to examine potential advantage of executing parallel
algorithm within the multicore processor environment. We analyze the effect of proposed
method on the quality of solution with respect to execution and communication time.

Key words and phrases. Ant Colony Optimization, Parallel Metaheuristic, Vehicle
Routing Problem, POSIX threads.

Mathematics Subject Classification. Parallel computation 65Y05; Transportation 90B06;
Parallel algorithms 68W10.

1 Introduction

The Vehicle Routing Problem (VRP) is a combinatorial problem with numerous applications
in telecommunication, transportation, logistics, etcetera. The majority of these applications
belong to NP-hard problems, where to find the optimal solution requires in the worst case the
exponential time. The VRP problem incorporate the construction of a set of vehicle tours that
start and end at a depot and satisfy the demands of a set of customers. Each customer is served
exactly once and both vehicle capacities and maximum tour lengths cannot be violated. For
these problems no exact polynomial solutions are available and all known solutions so far are
obtained by heuristic or metaheuristic algorithms. Especially metaheuristic methods seem to
produce quality solutions in shorter calculation times.
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Very successful method for solving the VRP problem is the Ant Colony Optimization (ACO)
method, developed by [9]. It was inspired by behavior of real ants that deposit pheromone on
ground to inform other ants about paths which should be followed by them. The idea of the
algorithm is taken from the observation of the ant behavior. Each ant in the colony builds
repeatedly its own solutions that are dependent on a given instance, a joint memory and
an heuristic information. After all ants in a colony have found their own solutions of given
combinatorial problem, the best solutions are selected and used for updating of the common
memory. In computer implementation, the ACO method is represented by repeatedly called
procedures which create solution by exploring fully connected graph of customers. After the
solution is build, the pheromone matrix is updated according to achieved quality of solution.

There are more applications of ACO on VRP variants published by scientists. Applications
based on basic VRP (CVRP respectively) can be found in [2], [13], [7]. ACO on VRP with
Time Windows (VRPTW) are described in [10] and VRP with Pick-ups and Deliveries in [8].
There are more applications of ACO on VRP extensions listed in [11], where detailed analysis
of parallel ACO methods used for solving the VRP problem can be found, however all of them
are NP-Hard.

Many scientists have aimed to find parallel variants of the ACO for several reasons. The first
is the fact that searching for new solution makes the work of each ant in a colony independent
from other ants. The next reason is the fact that the time needed for solving the optimization
problem is proportional to the size of instance depending so on the number of customers. Even
finding of an optimal solution is for larger instances impossible due to the NP-hardness, the
time needed for solving the real problems increases exponentially.

In this study we have chosen to use Savings based ACO algorithm for VRP as described in
[7]. We study the VRP problem for large instances [4], [12] of basic VRP also called Capacitated
Vehicle Routing Problem. Instances of such scale still don’t have exactly calculated optimal
solutions due to the problem’s NP-Hardness. Our aim was to design a parallel algorithm for
ACO suitable for multicore architectures. We have modified the parallel algorithm used in [7]
for the multi-colony approach. We have used coarse-grained parallelization strategy, whereby
each computing thread has assigned exactly one colony of ants. We suppose, that all colonies
have the same behavior and are homogeneous. They cooperate in finding the best solution
in an asynchronous way. The threads are divided into groups according to the number of
cores in a computational node of the computer. They work in parallel and exchange the best
known solutions so far within a group residing in a node. For communication within a group
common shared memory is used. The groups of threads belonging to different nodes exchange
the solutions via shared files across the network. Those groups are based on cluster topology
and one group of threads corresponds to one node of the cluster. The communication between
groups of threads residing on different nodes is performed over the network by means of usage
of shared files.

The paper is organized as follows. Next section brings the formulation the VRP problem.
In Section 3 we describe shortly parallelization strategies for ACO, and outline the algorithm
used for implementation with Posix threads. Section 4 brings gained computational results
and shows dependence of the solution quality on the number of threads, whereby the execution
and communication time are also presented. We conclude with several remarks and outlooks
concerning the future work.
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2 Problem formulation of the Vehicle Routing Problem

The Vehicle Routing Problem (VRP) can be according to [4] described as follows: Let G =
(V,E, c) be a complete graph, with n + 1 nodes (v0, ..., vN ) corresponding to the customers
i = 1, ..., N and the depot i = 0, and the edge set ((vi, vj) ∈ E ∀ vi, vj ∈ V ). With each edge
(vi, vj) ∈ E is associated a non-negative weight cij, which refers to the travel costs between
nodes vi and vj and a non-negative weight tij, which refers to the distance between the nodes.
Furthermore, with each node vi, i = 1, ..., N is associated a non-negative demand di, which has
to be satisfied, as well as a service time δi. The service time at the depot is set to δ0 = 0. At the
depot a fleet of size K is available, where each vehicle has a capacity of Qk and the maximum
driving time for each vehicle is T k.

Let xk
ij denote the binary decision variables with the following interpretation:

xk
ij =

⎧⎨
⎩

1 if vehicle k visits node vj

immediately after node vi

0 otherwise.

Then the objective can be written as

minimize
N∑

i=0

N∑
j=0

K∑
k=1

cijx
k
ij (1)

under the following restrictions

N∑
i=1

N∑
j=1

xk
ijdi ≤ Qk 1 ≤ k ≤ K (2)

N∑
i=0

N∑
j=0

xk
ij(tij + δi) ≤ T k 1 ≤ k ≤ K (3)

N∑
i=0

xk
ij −

N∑
l=0

xk
jl = 0 1 ≤ k ≤ K, 0 ≤ j ≤ N (4)

N∑
i=0

K∑
k=1

xk
ij =

{
1 1 ≤ j ≤ N
K j = 0

(5)

∑
i∈S

∑
j∈S

xk
ij ≤ |S| − 1 ∀S ⊆ {1, ..., N}, 1 ≤ k ≤ K (6)

xk
ij ∈ {0, 1} 1 ≤ k ≤ K, 0 ≤ i, j ≤ N (7)

The objective (1) is to minimize the total travel costs. Constraints (2) ensure that no vehicle is
overloaded. Constraints (3) require that the maximum driving time for each vehicle is respected.
Constraints (4) ensure that if a vehicle visits a customer it also leaves the customer. Constraints
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(5) require that all customers are visited once, and that the depot is left K times. Sub-tour
elimination is ensured through constraints (6). Finally, constraints (7) are the usual binary
constraints.

3 Parallelization of ACO

The application of distributed computing on ACO means that several processes or threads work
simultaneously on several processors to obtain common solution with the best solution quality.
This can be achieved by functional or domain decomposition of problem and distribution over
processors. Functional parallelism is characterized by several tasks working over same data.
Domain decomposition is characterized by splitting the data into several smaller parts which
are calculated separately. Tasks are typically cooperating when calculating solution, therefore
some communication is required. In case that tasks are synchronizing themselves or not we can
distinguish between synchronous and asynchronous communication model. For more details
concerning the parallelization of ACO for VRP see [7], and [6]. In general, there are three
possibilities of parallelization of ACO: fine-grained parallelization, coarse-grained parallelization
and mixed parallelization. The fine-grained parallelization is a low-level parallelization achieved
by splitting a colony into several sub-colonies that are processed in parallel. By coarse-grained
parallelization the parallel search is computed by using several homogeneous colonies. The
mixed parallelization is a combination of fine and coarse-grained parallelization.

In our work we have rewritten parallel algorithm using MPI (Message Passing Interface)
[14] synchronous communication model to use Pthreads [1]. A thread of execution is a fork
of a computer program into more concurrently running tasks. Those threads are executed
independently but share memory and other resources. Typically, creation, destruction and
inter-process communication using threads are faster than using processes. There exist more
implementations of threads. In our case we have used Pthreads. Pthread is the POSIX1003.1c
thread standard put out by the IEEE standards committee. This standard got the IEEE
Standards Board approval in June 1995. In the MPI2 [14] specification there exists thread
support inside of MPI. To achieve that only one thread can access shared memory we have
used Pthread mutexes. We have used locking file mechanism to achieve exclusive access to
shared file. The share file used in our code is accessed via network file system disallowing us
to use flock or fcntl mechanism. For these reasons we have used only exclusive access and we
have created lock file every time when thread attempts to read or write from the shared file.
In Table2 and Table3 we report measured time spent in waiting for releasing mutexes and file
locks including storing and loading of data.
We have used coarse-grained parallelization strategy where one colony is assigned to each
thread. It means, that the number of parallel threads is equal to the number of colonies and
each thread calculates solutions of all ants in a colony. All the time a better solution is found,
it is stored in the shared memory within one node. The pseudoalgorithm can be formulated as
follows:

1: Initialization;

2: For i=1; i<=It_out do:

Reset pheromone matrix;

232 volume 2 (2009), number 2



Aplimat - Journal of Applied Mathematics

For j=1; j<=It_in do:

For Ant=1; Ant<=n/2 do:

Create Savings based Ant solution;

Select elitist Ants;

Update solution within one node if better solution is found;

Update pheromone matrix if needed;

Update Savings list if needed;

End do j;

Update solution between nodes in shared files if better;

solution is found;

End do i;

3: Finalization;

Table 1: Measured problem instances, where n denotes the number of customers and Q denotes
the vehicle capacity.

Instance n Q

C4 150 200
C5 199 200
G18 300 200
G19 360 200
G20 420 200

4 Computational results

In our experiments we have used test instances presented in Table 1. They are two larger
instances generated by Christofides et al. [4] and three of the larger instances generated by
Golden et al. [12]. For all presented experiments we have used the cluster1, University of
Vienna, consisting of 72 SUN X4100 nodes with two 64-bit dual core processors, each. Therefore
we could use 4 threads working over the common shared memory. For communication within
one node we have used common shared memory and the communication between nodes was
implemented via storing of exchanged data in shared files over the network. The threads are
divided into groups, whereby the rank of them is dependent on the number of node cores. For
communication between threads belonging to the same group, shared memory is used. For
communication between nodes the file access is used. The communications are asynchronous
and are realized after a better solution is found.

Reported results when not mentioned otherwise are average values gained over 30 runs for
each instance. Denoting by n the number of customers, for all instances we have used these

1For details see: http://luna.cs.univie.ac.at/aurora/description.htm
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Table 2: Calculated average results according to the number of threads of each measured
instance, where Th denotes number of the threads used, V denotes calculated quality solu-
tion, tc denotes the overall time spent by communication, tr denotes the overall execution
time(communication time included) and Is denotes the iteration number where solution value
has been stabilized

Instance Th V tc[s] tr[s] Is

C4

1 1070.73 1.96 52.10 78.97
4 1064.48 9.37 53.87 91.75
8 1056.99 10.71 52.53 174.75
16 1052.99 13.37 52.42 232.50
32 1048.08 21.06 54.37 240.61

C5

1 1377.18 1.68 143.24 95.28
4 1365.42 6.63 141.90 110.62
8 1352.98 7.38 132.16 254.9
16 1346.58 8.24 127.93 282.14
32 1337.69 10.94 126.73 314.18

G18

1 1090.35 1.53 504.58 112.97
4 1081.58 5.67 505.18 146.87
8 1074.12 10.81 471.68 290.35
16 1066.00 6.17 451.48 341.46
32 1061.18 7.69 436.50 368.32

G19

1 1501.36 1.57 1105.70 150.14
4 1489.89 5.62 1105.50 156.82
8 1479.22 5.65 1001.51 288.80
16 1472.19 5.80 990.94 316.09
32 1461.76 8.87 948.26 349.30

G20

1 2009.37 1.69 2058.67 161.45
4 1994.98 5.78 2070.65 181.86
8 1971.36 5.83 1849.31 303.98
16 1956.45 5.90 1721.34 372.63
32 1948.92 9.59 1632.35 355.42
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Table 3: Calculated average results of C4 instance within one node without file access according
to number of threads, where Th denotes number of used threads, V denotes the calculated qual-
ity solution, tc denotes overall time spent by communication and Is denotes iteration number
where solution value has been stabilized

Th V tc[ms] Is

1 1068.09 0.25 74.1
2 1063.27 0.66 76.32
3 1063.24 1.29 121.80
4 1063.76 1.30 190.30

configurations: We have used �n/2� artificial ants for each thread, α = β = 5 and σ = 3 elitist
ants, the evaporation rate ρ = 0.95, and the neighborhood size �n/4�. We let the algorithm run
for Itout = 20 outer iterations for each problem instance, and Itin = 20 inner loops. After all
ants in a colony found their solutions, the best σ solutions were chosen. They were compared
with the best solutions found so far and saved in the common shared memory. If the last
generated solution was not better, it was not saved and the shared memory stayed unchanged.
The pheromone matrix was updated after a better solution was found. After each of the
20 outer iterations, the gained solutions between nodes were compared and updated. When
comparing communication times in Table 2 and Table 3, we can see that using internode shared
files dramatically increases the communication time. The Table 2 illustrates the fact that the
time spent by communication increases with using more cluster nodes. The communication
time increases only slightly with increasing of number of threads in the frame of one node.
This seems to be caused by fact that communication is done only if better solution is found
within node (4 threads). In the case of using just one thread for calculation, the file access
is performed each time better solution is found. From Table 2 we can see that the solution
quality is increasing with the number of colonies, because each colony corresponds to a separate
thread. The reason is that more artificial ants and therefore more routes are generated. This
fact supports the advantages of executing the parallel algorithm within the multicore processor
environment. It is interesting that the increased number of threads and so the colonies, increases
also the number of iteration where the best quality solution has been found.

5 Conclusions

We have presented parallel Posix threads based implementation of Ant Colony Optimization
method for solving the Vehicle Routing Problem. The algorithm is based on a homogeneous
multi-colony approach and used asynchronous communication in finding solutions. We have
showed that the quality of solution is improved in dependence on the number of colonies,
whereby each colony is assigned to a separate thread.
In our future work we would like to study various asynchronous algorithms for ACO and test

volume 2 (2009), number 2 235



Aplimat - Journal of Applied Mathematics

them on multicore architectures with more cores.
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Abstract. We use an orthogonal transform by goniometric functions to the partial differ-
ential equations for Jacobi orthogonal polynomials in two variables taken as products of
classical Jacobi polynomials in one variable. The results are specified for Legendre poly-
nomials in two variables and functions associated with them which have wide applications.
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1 Introduction

V. Jarńık in his book [4] introduces the term ”orthogonal transform” that is often used in
mathematical modelling in natural and technical sciences (cf. [1-2]and [6]). In the Jarńık’s
book we can find some examples of orthogonal transforms, e.g. transform by polar coordinates,
transform by spherical coordinates, etc.

In the present paper we use orthogonal transform by goniometric functions. We apply them
to the partial differential equations that are satisfied by classical Jacobi orthogonal polynomials
in two variables.

It is well known that the classical Jacobi polynomials {Jn(x)}∞n=0 are orthogonal in the
interval < −1, 1 > with respect to the weight function

J(x) = (1 − x)α(1 + x)β .
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In this contribution we consider their two-dimensional pendants defined as the products Jn(x)Jm(y),
n = 0, 1, 2, . . . , m = 0, 1, 2, . . . which are orthogonal in the square region

R = {(x, y); −1 < x < 1, −1 < y < 1}

with respect to the weight function

J(x)J(y) = (1 − x)α(1 + x)β(1 − y)α(1 + y)β.

It means that∫∫
R

Jn(x)Jm(y)Jk(x)Jl(y)(1 − x)α(1 + x)β(1 − y)α(1 + y)βdxdy = 0

for (n,m) 	= (k, l), n = 0, 1, 2, . . . , m = 0, 1, 2, . . . , k = 0, 1, 2, . . . , l = = 0, 1, 2, . . . .

2 Orthogonal transform of partial differential equations satisfied by Jn(x)Jm(y)

It is well known (cf. [5, 7-8]) that

(1) Dα,β
1 Jn(x)Jm(y) = [−n(n + α + β + 1) − m(m + α + β + 1)]Jn(x)Jm(y)

where

Dα,β
1 = (1 − x2)

∂2

∂x2
+ (1 − y2)

∂2

∂y2
+ [β − α − (α + β + 2)x]

∂

∂x
+ [β − α − (α + β + 2)y]

∂

∂y

is the second order partial differential operator defined for α > −1, β > −1 .
Let us transform the operator Dα,β

1 into another form by the orthogonal transform

(2) x = cos u, y = sin v,

i.e.,
u(x) = arccos x, v(y) = arcsin y.

It means that the region R = {(x, y); −1 < x < 1, −1 < y < 1} is transformed to the region

U =
{

(u, v); 0 < u < π, −π

2
< v <

π

2

}
.

Then we have
du

dx
= − 1√

1 − x2
,

dv

dy
=

1√
1 − y2

and
∂

∂x
=

∂

∂u

du

dx
= − ∂

∂u

1√
1 − x2

,
∂

∂y
=

∂

∂v

dv

dy
=

∂

∂v

1√
1 − y2

,

∂2

∂x2
=

∂2

∂u2

1

1 − x2
− ∂

∂u

x

(1 − x2)
3
2

,
∂2

∂y2
=

∂2

∂v2

1

1 − y2
+

∂

∂v

y

(1 − y2)
3
2

.
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So the operator Dα,β
1 is transformed to the operator

(3) Dα,β
2 =

∂2

∂u2
+

∂2

∂v2
+

+[(α − β) csc u + (α + β + 1) cot u]
∂

∂u
+ [(β − α) sec v − (α + β + 1) tan v]

∂

∂v
.

It is obvious that the equations

Dα,β
2 f(u, v) = [−n(n + α + β + 1) − m(m + α + β + 1)]f(u, v)

are satisfied by the products Jn(cos u)Jm(sin v), n = 0, 1, 2, . . . , m = 0, 1, 2, . . . .
In (3) we denote

ω1(u) = (α − β) csc u + (α + β + 1) cot u

and
ω2(v) = (β − α) sec v − (α + β + 1) tan v .

Further, denote
q(u, v) =

√
sin u cos vJ(cos u)J(sin v) .

We express its natural logarithm

lnq(u, v) =
1

2
[ln sin u + ln cos v] +

α

2
[ln(1 − cos u) + ln(1 − sin v)]+

+
β

2
[ln(1 + cos u) + ln(1 + sin v)] .

Then

(4)
∂lnq(u, v)

∂u
=

∂q(u,v)
∂u

q(u, v)
=

1

2
ω1(u)

and

(5)
∂lnq(u, v)

∂v
=

∂q(u,v)
∂v

q(u, v)
=

1

2
ω2(v) .

So
∂q(u,v)

∂u
+ ∂q(u,v)

∂v

q(u, v)
=

1

2
[ω1(u) + ω2(v)]

and integrating (4) and (5) from 0 to u and v, respectively, where u ∈ (0, π) , v ∈
(
−π

2
, π

2

)
we have

lnq(u, v) =
1

2

⎛
⎝ u∫

0

ω1(t)dt +

v∫
0

ω2(t)dt

⎞
⎠

and

q(u, v) = exp

⎡
⎣1

2

⎛
⎝ u∫

0

ω1(t)dt +

v∫
0

ω2(t)dt

⎞
⎠
⎤
⎦ .
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For n = 0, 1, 2, . . . , m = 0, 1, 2, . . . we take the functions

(6) qn,m(u, v) = Jn(cos u)Jm(sin v)q(u, v) =

= Jn(cos u)exp

⎡
⎣1

2

u∫
0

ω1(t)dt

⎤
⎦ Jm(sin v)exp

⎡
⎣1

2

v∫
0

ω2(t)dt

⎤
⎦ .

The functions (6) satisfy the differential equations

(7)
∂2ϕn,m(u, v)

∂u2
+

∂2ϕn,m(u, v)

∂v2
=

=

[
ω2

1(u) + ω2
2(v)

4
+

ω1
′(u) + ω2

′(v)

2
− n(n + α + β + 1) − m(m + α + β + 1)

]
×

×ϕn,m(u, v)

in the region U (cf.[3, p.123]). So, the differential equations (7) are of the type

Δϕn,m(u, v) = λn,m(u, v)ϕn,m(u, v)

where Δ is the Laplace operator of u and v and

λn,m(u, v) =
ω2

1(u) + ω2
2(v)

4
+

ω1
′(u) + ω2

′(v)

2
− n(n + α + β + 1) − m(m + α + β + 1) .

3 Orthogonality of the functions qn,m(u, v)

Suppose that (n,m) 	= (k, l). Then∫∫
U

qn,m(u, v)qk,l(u, v)dudv =

=

∫∫
U

Jn(cos u)Jm(sin v)Jk(cos u)Jl(sin v)q2(u, v)dudv =

=

∫∫
U

Jn(cos u)Jm(sin v)Jk(cos u)Jl(sin v) sin u cos vJ(cos u)J(sin v)dudv =

=

π∫
0

Jn(cos u)Jk(cos u) sin uJ(cos u)du

π
2∫

−π
2

Jm(sin v)Jl(sin v) cos vJ(sin v)dv =

=

1∫
−1

Jn(x)Jk(x)J(x)dx

1∫
−1

Jm(y)Jl(y)J(y)dy = 0
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because at least one of the last integrals is equal to zero.
Similarly, if the systems {Jn(x)}∞n=0 and {Jm(y)}∞m=0 are orthonormal in the interval

< −1, 1 > we have∫∫
U

q2
n,m(u, v)dudv =

∫∫
U

J2
n(cos u)J2

m(sin v)q2(u, v)dudv =

=

∫∫
U

J2
n(cos u)J2

m(sin v) sin u cos vJ(cos u)J(sin v)dudv =

=

π∫
0

J2
n(cos u) sin uJ(cos u)du

π
2∫

−π
2

J2
m(sin v) cos vJ(sin v)dv =

=

1∫
−1

J2
n(x)J(x)dx

1∫
−1

J2
m(y)J(y)dy = 1.

Thus we proved that the functions qn,m(u, v) given by (6) are orthogonal (orthonormal)
functions in two variables on U with respect to the weight function w(u, v) = 1.

4 Legendre polynomials and Legendre associated functions in two variables

If in (1) we have α = β = 0, then we get

D0,0
1 = (1 − x2)

∂2

∂x2
+ (1 − y2)

∂2

∂y2
− 2x

∂

∂x
− 2y

∂

∂y

and

D0,0
1 Ln(x)Lm(y) = [−n(n + 1) − m(m + 1)]Ln(x)Lm(y)

where {Ln(x)}∞n=0 and {Lm(y)}∞m=0 are the Legendre polynomials which are orthogonal for
−1 < x < 1 and −1 < y < 1 with respect to the weight functions L(x) = 1 and L(y) = 1
(cf. [9]).

From there

D0,0
2 =

∂2

∂u2
+

∂2

∂v2
+ cot u

∂

∂u
− tanv

∂

∂v

and

D0,0
2 Ln(cos u)Lm(sin v) = [−n(n + 1) − m(m + 1)]Ln(cos u)Lm(sin v).

Then

q(u, v) =
√

sin u cos v

and the equations

Δϕn,m(u, v) =
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=

[
cot2 u + tan2 v

4
+

1

2

(
1

sin2 u
− 1

cos2 v

)
− n(n + 1) − m(m + 1)

]
ϕn,m(u, v)

are satisfied by the functions

qn,m(u, v) = Ln(cos u)Lm(sin v)
√

sin u cos v

which are orthogonal on the square region U with respect to the weight function w(u, v) = 1.
It can be concluded that the functions qn,m(u, v) taken as the solutions of the partial dif-

ferential equations (1) in the case of products of Legendre polynomials Ln(x)Lm(y) are after
orthogonal transform (2) in the role of associated Legendre functions in two variables which
are orthogonal, too. They have wide applications in physics and other natural and technical
sciences.
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Discrete Transform for Single - Phase PES Transients - a New Approach. Proceedings of
the 27th IASTED International Conference Modelling, Identification, and Control, Febru-
ary 11 - 13, 2008, Innsbruck, Austria, 60 - 65, 2008.
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e-mail: mariana.marcokova@fpv.uniza.sk

Vladimı́r Guldan, RNDr.
Gymnázium Hlinská, 010 01 Žilina
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AN INTROSPECT OF SIMULATION
OF NONDETERMINISTIC TURING MACHINE

WITH A REAL-ANALYTIC FUNCTION

PIEKARZ Monika, (PL)

Abstract. In this paper some modification of a real-analytic simulation of nondetermin-
istic Turing machine is given by means of finite state automata and Collatz function. This
is the modification of the simulation presented in [7] and based on the paper of Koiran
and Moore [4]. The simulation presented here is less complex than in [7].

Key words and phrases. nondeterministic Turing machine, simulation.

Mathematics Subject Classification. Primary 68Q10

1 Introduction and motivation

The Turing machine is the most useful model to point out complexity classes of some problems
[9, 11]. Recently several types of Turing machines, which can solve some problems undecidable
by the classical Turing machines, have been introduced [3, 5, 10]. Notwithstanding in complexity
theory the main role plays non-realistic model called nondeterministic Turing machine (NTM)
which expands a deterministic version.

In this paper we’ll present some simulation of nondeterministic Turing machine by real-
analytic function built from elementary functions. Systems of functions in which such a sim-
ulation is possible are able to help us to find solutions of classical (un)decidability problems
which could be analyzed in models with possible simulations. Also a simplicity of simulations
can be considered from the mathematical point of view. Various authors have independently
shown that finite-dimensional piecewise-linear maps and flows can simulate Turing machines.
Such methods have been presented in various papers [4, 12, 13] sometimes with additional
requirements for simulating functions.
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In [7] a simulating real-analytic function f which for some number coding input configuration
of NTM give us after t′ iterations some number coding output configuration of NTM was
presented, t′ has an exponential growth respect to time-step of the NTM . Simulation presented
here is the modification of simulation presented in [7]. Simulating function which we will present
now is similar form as in [7] but it is constructed from 210k terms instead 2310k terms where
k is number of states of NTM .

2 Basic definition

We make now some introduction to present the main result.
Formally, a nondeterministic Turing machine (NTM) of one tape is defined as a 5-tuple

(Q,
∑

, δ, q0, qf ), where Q is a nonempty finite set (of k = |Q| states),
∑

is not empty finite set
of a tape alphabet (of m = |

∑
| symbols), q0 ∈ Q is the initial state, qf ∈ Q is the accepting

state, and δ : Q ×
∑

→ ℘(Q ×
∑

×{←,→}) is a total function called a transition function of
M , where, for any set A,℘(A) denotes the power set of A.

An input w is accepted by a nondeterministic Turing machine if and only if there exists a
computation of this NTM on w ending in the accepting state. In this paper we will state that all
symbols from Q and

∑
are coded as a sequence of natural numbers, so Q = {0, 1, . . . , k−1} and∑

= {0, 1, . . . , m−1} where 0 is the code of the empty symbol which fills the whole tape besides
the finite number of tapes cells which are used by NTM during the computation. Moreover, we
don’t allow NTM with more then two next possible movements. More possibilities are useless
because the computation is only a constant factor longer when we bound to two possible choices
in one step of the computation. Thus, without loss of generality, if we require in our model that
for every pair (q, a) from Q×

∑
, |δ(q, a)| ≤ 2, specifying δ̂ : Q×

∑
×{0, 1} → Q×

∑
×{←,→}),

then bits 0 and 1 prescribe at most two branches of the computation in each state for each
symbol being read.

3 Simulations of nondeterministic Turing machine by FSA

We present a modification of the simulation given by Koiran and Moore in [4]. We have
presented similar simulation in [7]. However, we consider here the simulation with less complex
finite automaton used as a help to find a simulation function. So the simulation function which
we receive is less complex, too.

Now we shortly recall an idea of the simulation. In the construction we will use a finite
state automaton FSA which has a finite number of counters and can increment or decrement
the counters or check their equality to 0 ([6]).

Basic difference between this simulation and the simulation proposed in [7] is that the
current FSA uses four counters instead five, they are: L - the code of the left part of a tape,
R - the code of the right part of a tape (R includes the tape symbol a0 at the head current
location), G - the code of guess, W is a working counter. Specifically, if our NTM has m

tape symbols, L =
∞∑
i=1

mi−1a−i, R =
∞∑
i=0

miai and G =
t−1∑
i=0

2igi where t is the number of steps

of NTM computation and gi ∈ {0, 1}. In [7] we had the fifth counter S which contained the
current state of NTM . Now we’ll remember the current state of NTM in states of FSA.

248 volume 2 (2009), number 2



Aplimat - Journal of Applied Mathematics

Every particular variant of one step of the transition function δ̂ is described by three blocks
of nodes of FSA. So this time a general description of the FSA simulating the behavior of the
NTM is given on Fig. 1.

Let us explain the meaning of particular elements of FSA. Block I (Fig. 2) is constructed
for the purpose of checking a current symbol under the head of NTM .

The counters on the output of Blok I are equal to W = �R/m�, R = 0; moreover we know
the symbol a which is actually under the head, where � � denotes cut to the integer part.

In the case when state s is a final state of NTM Blok I is formed as on Fig. 3 and FSA
finishes its computation but in a rest case it gets to the Blok III (Fig. 4), where our model
has to determine the next bit of a guess p. Output values of counters of this blok are equal
G = �G/2�, W = 0.

Figure 1: FSA simulating the behavior of NTM .

Figure 2: Blok I. Checking the head of NTM .

Figure 3: Blok I in the case when s is the final state of NTM .

Now we must fork the remaining part of the scheme. In the case when transition function
is δ̂(s, a, p) = (s′, a′,→), i.e. the move in the right direction, we finish with Block II (Fig. 5)
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Figure 4: Blok III. Checking one bit of the guess of NTM .

Figure 5: Blok II. The right direction move, changing the symbol under the head.

Figure 6: Blok IIa. Changing the symbol under the head.

Figure 7: Blok IIb. The left direction move, checking the symbol on the left to the head and
changing the counters FSA respectively to the left move of the head.

which ends with counters equal respectively (a′ is the symbol given by the transition function
for symbol a and state s): R = �R/m�, L = mL + a′, W = 0.

However, the continuation of Block III in the case δ̂(s, a, p) = (s′, a′,←) is more complicated
and it consists of two parts: Block IIa (Fig. 6) and Block IIb (Fig. 7).

At the end of Block IIa we have counters equal respectively: (a′ is the symbol given by the
transition function for symbol a an state s) R = m2R + ma′, W = 0 and we are ready to the
left shift, so we can finish with Block IIb which checks the symbol on the left to the head and
add it to the R. In this case we get the following results: R = m2�R/m�+ma′ + i, L = �L/m�,
W = 0 where i is the checked symbol on the left to the head.

After Block II in both cases our FSA changes its state into the state corresponding with a
new state s′ of NTM .

The simulation of each step of NTM needs O(L,R,G) steps of FSA, L and R are size
O(ml) where l is the tape length used by NTM , G is size 2t and t is the time which takes
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the computation of nondeterministic Turing machine. So we can simulate it by FSA with 4
counters in time O(t(ml + 2t)).

4 Simulation the FSA by real-analytic function of one variable

We now show how to simulate such FSA with a real-analytic function, in this case the Collatz
function. Here, our method is the same as in [4]. Let f(x) = aix+ bi, for x ≡ i mod u for some
base u and constans ai, bi, where 0 ≤ i < u. We will call any of such f a Collatz function. We
define x = 2L3R5G7W k + s where k is the number of states and s is the current state of FSA.
Clearly all of our operations can be carried out on x. For instance, to decrement W , increment
R m2 times, we write

(decW,m2incR) : f(x) = (3m2

/7)(x − s) + s′ so a = 3m2

/7, and b = s′ − (3m2

/7)s.

Owing to the fact that our simulating FSA uses only four counters, we can test for zero
on all our counters in terms of x mod 210k instead in terms x mod 2310k like in [7]. We use
for them the special function h210k with the following property h210k(x − i) is equal to 1 iff
x ≡ i mod 210k. The function

hu(x) =

(
sin πx

u sin πx
u

)
=

{
1 x mod u = 0
0 x mod u 	= 0

,

with u = 210k is suitable for the purpose. All important cases are given in Table 1.
Only 104k terms are actually needed, since the other 106k possibilities i = x mod 210 never

happen. Then we have the one-dimensional simulation of nondeterministic Tuirng machines

given by the real-analytic function f(x) =
p−1∑
i=0

h210k(x − i)(aix + bi)
1.

If we now put s0 as a start state of NTM , g as a natural number coding guess of NTM in
particular steps and input of NTM on the tape on the left of the head than x = 2w5g + s0 is
an equivalent value to the input w of NTM . So we can form the following theorem:

Theorem 4.1 For any nondeterministic Turing machine M with m tape symbols and any input
w, and any guess g, there is a real-analytic function f of one variable and constants k (number
of states of NTM) and s0, such that M halts after t time-steps with a result y iff there exists
t′ ∈ N such that f t′(2w5g + s0) = 2y13y25g1k + s1 where y = y1 ×m|y2| + y2 and s1 is a final state
of M and t′ = O(mt + 2t).
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Table 1: List of values x mod 210k relative to the values of counters of FSA

rejestry i(x mod 210k)
L > 0, R > 0, G > 0,W > 0 s
L = 0, R > 0, G > 0,W > 0 s + 150k
L > 0, R = 0, G > 0,W > 0 s + 70k, s + 140k
L > 0, R > 0, G = 0,W > 0 s + 42k, s + 84k, s + 126k, s + 168k
L > 0, R > 0, G > 0,W = 0 s + 30k, s + 60k, s + 90k, s + 120k, s + 150k,

s + 180k
L = 0, R = 0, G > 0,W > 0 s + 35k, s + 175k
L = 0, R > 0, G = 0,W > 0 s + 21k, s + 63k, s + 147k, s + 189k
L = 0, R > 0, G > 0,W = 0 s + 15k, s + 45k, s + 75k, s + 135k, s + 165k,

s + 195k
L > 0, R = 0, G = 0,W > 0 s + 14k, s + 28k, s + 56k, s + 98k, s + 112k,

s + 154k, s + 182k, s + 196k
L > 0, R = 0, G > 0,W = 0 s + 10k, s + 20k, s + 40k, s + 50k, s + 80k,

s + 100k, s + 110k, s + 130k, s + 160k, s + 170k,
s + 190k, s + 200k

L > 0, R > 0, G = 0,W = 0 s + 6k , s + 12k, s + 18k , s + 24k, s + 36k,
s + 48k, s + 54k, s + 66k, s + 72k, s + 78k,
s + 96k, s + 102k, s + 108k, s + 114k, s + 132k,
s + 138k, s + 144k, s + 156k, s + 162k, s + 174k,
s + 186k, s + 192k, s + 198k, s + 204k

L = 0, R = 0, G = 0,W > 0 s + 7k, s + 49k, s + 91k, s + 133k
L = 0, R = 0, G > 0,W = 0 s + 5k, s + 25k, s + 85k, s + 125k, s + 185k,

s + 205k
L = 0, R > 0, G = 0,W = 0 s + 3k, s + 9k, s + 27k, s + 33k, s + 39k,

s + 51k, s + 81k, s + 87k, s + 99k, s + 117k,
s + 141k, s + 153k

L > 0, R = 0, G = 0,W = 0 s + 2k, s + 4k, s + 8k, s + 16k, s + 32k,
s + 46k, s + 64k, s + 92k, s + 106k, s + 128k,
s + 158k, s + 184k
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